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Introduction

The Ising model is a mathematical model of a magnet, where at each site (vertex) of a finite graph G = (V,E)
(with n vertices, usually taken to be a lattice), there is a “spin” which is either +1 or −1. The energy of a
spin configuration σ ∈ Ω = {±1}V is given by

H(σ) = −
∑
x∼y

σxσy.

This means that configurations where spins disagree across an edge have higher energy.
The Gibbs measure, which gives the probability of a spin configuration, is given by

P[σ] ∝ exp(−βH(σ)),

where β ∈ [0,∞] is a parameter called the inverse temperature. Under the Gibbs measure, configurations
with lower energy (i.e. with more aligned spins) have higher probability. The parameter β controls the
importance of the energy. For β = 0, the distribution is uniform (i.e. energy is irrelevant), while for β = ∞,
the measure is concentrated on just two states, the “all-plus” and “all-minus” states. For other values of β,
the Gibbs measure interpolates between these two behaviors.

However, for certain families of graphs such as growing portions of a lattice, this interpolation is not
smooth in the large-graph limit. There is a critical inverse temperature βc where a phase transition occurs;
for β < βc, the Gibbs measure behaves much like the uniform case, with nearly independent spins and no
long-range order, while for β > βc, the Gibbs measure is concentrated near the all-plus and all-minus states,
and there is long range order (i.e. distant spins are positively correlated). At the critical point β = βc,
a rich self-similar fractal structure emerges, and there is polynomial decay of correlations (as opposed to
exponential decay in high temperature or no decay in low temperature).

One way to (approximately) sample from the Gibbs measure is to use Markov-chain Monte-Carlo. A
natural Markov chain on the space of spin configurations is the Glauber dynamics, where each site has an
independent Poisson clock. When a site’s clock rings, the spin at that site is resampled according to the
conditional distribution of the spin at that site, given the spins in the rest of the graph. Since the spins only
interact across edges, only the spins of the neighbors can affect this conditional distribution. Specifically,
since there is a lot of cancellation, we resample according to the rule

P[σx = ±1] =
exp(±β

∑
y∼x σy)

exp(β
∑

y∼x σy) + exp(−β
∑

y∼x σy)
. (∗)

At low temperatures, this chain mixes exponentially slowly, since it will get stuck near one of the two
low-energy states; getting to the other low-energy states requires ≈ n low-probability events (flipping to
the “wrong” spin) to happen in quick succession, which has exponentially small probability (in n = |V |).
However, at high temperatures the chain mixes quickly (in time O(log n)). In this regime, as proved by
Lubetzky and Sly, the chain also exhibits the “cutoff” phenomenon, which means that there is a specific time
tm such that before tm the chain is far from stationarity, whereas aftter tm the chain is close to stationarity.
Our objective is to understand this result.

Definitions of Mixing and Cutoff

We will use the total variation distance between two probability measures on Ω:

∥µ− ν∥TV =
1

2

∑
σ∈Ω

|µ(σ)− ν(σ)| = sup
A⊂Ω

|µ(A)− ν(A)| = inf
X∼µ
Y∼ν

P[X ̸= Y ].
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For a Markov chain (Xt) on Ω with stationary distribution π, define

d(t) = sup
σ∈Ω

∥P t(σ, ·)− π∥TV,

where P is the transition matrix of the Markov chain, and

tmix(ε) = inf{t : d(t) ≤ ε}.

Typically, as in our case, there is an implicit parameter n (e.g. the size of the graph). As n → ∞,
typically tmix(ε) → ∞ for each ϵ as well. We say that there is “cutoff” if tmix(ε) is not very dependent on ε,
i.e. if tmix(ε) = (1 + o(1))tmix(ε

′) for any ε, ε′ ∈ (0, 1). Intuitively, this means that all the mixing happens
“at once” at a certain time. This sounds strange, but in fact the cutoff phenomenon is quite common.

Note that to prove an upper bound on the mixing time, we need a lower bound on d(t), which corresponds
to finding an event A for which P t(σ,A) and π(A) are very different. To prove a lower bound on the mixing
time, we need an upper bound on d(t), which corresponds to finding a coupling X ∼ P t(σ, ·) and Y ∼ π for
which the probability P[X ̸= Y ] is small.

Case Study: β = 0

If β = 0 (infinite temperature), then (∗) is 1
2 , i.e. the spin is resampled as an independent coin flip. The

stationary distribution of this chain is uniform. Let’s quickly analyze the mixing of this chain. For now,
let’s think about time as discrete instead of continuous, so that at each time step one bit is chosen to be
resampled. This can be thought of as a 1

2 -lazy random walk on the Boolean hypercube {±1}V (forgetting
about the edges of G).

First, notice that once all bits are selected and resampled, the state of the chain is exactly uniform, and
so the chain has mixed (and d(t) = 0). By coupon-collecting, this happens at time t ≈ n log n. However, this
is more than what we need. To understand why, recall that under the uniform distribution on the hypercube,
which can be thought of as flipping n independent coins, there is a natural spread of

√
n (the variance of the

number of heads is n). So, intuitively, we only need to resample n −
√
n of the bits in order to be close to

the uniform distribution (as long as the bits that we miss are random!). By the same calculation that gave
us coupon-collecting, this takes time

n−
√
n∑

j=0

n

n− j
= n

n∑
k=

√
n

1

k
≈ n

∫ n

√
n

1

x
dx = n(log(n)− log(

√
n)) =

1

2
n log n.

Indeed, this chain has cutoff at time t = 1
2n log n, with cutoff window O(n). If we translate this back

to continuous time, since each of the n sites acts in parallel, we get cutoff at time t = 1
2 log n, with cutoff

window O(1). Let’s see how to actually prove this cutoff (still working in discrete time).
First, notice that for any set J ⊆ V , the function

fJ(σ) =
∏
x∈J

σx

is an eigenvector for the transition matrix of this chain. Indeed, we have

P (σ, τ) =


1
2 if σ = τ,
1
2n if σ differs from τ at exactly one site,

0 otherwise.

In the second case, if the location where σ and τ differ is in J , then fJ(τ) = −fJ(σ), and if it is not in J
then fJ(τ) = fJ(σ). Thus ∑

τ

P (σ, τ)fJ(τ) =
1

2
fJ(σ)−

|J |
2n

fJ(σ) +
n− |J |
2n

fJ(σ)

=
n− |J |

n
fJ(σ),
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so the eigenvalue is 1− |J|
n . These eigenvectors are orthonormal: if x ∈ J1 \ J2, then

Eπ[fJ1
(σ)fJ2

(σ)] = Eπ[σx] · Eπ[fJ1\{x}(σ)fJ2
(σ)] = 0,

and Eπ[fJ(σ)
2] = Eπ[1] = 1.

Now notice that

∥P t(σ, ·)− π∥TV =
1

2

∥∥∥∥P t(σ, ·)
π(·)

− 1

∥∥∥∥
L1(π)

≤ 1

2

∥∥∥∥P t(σ, ·)
π(·)

− 1

∥∥∥∥
L2(π)

,

so we can use this spectral information to bound d(t) from above. Specifically, since

P (σ, τ)

π(τ)
=
∑
J⊆V

fJ(σ)fJ(τ)

(
1− |J |

n

)
,

we have ∥∥∥∥P t(σ, ·)
π(·)

− 1

∥∥∥∥2
L2(π)

=

∥∥∥∥∥∥
∑

∅ ̸=J⊆V

fJ(σ)fJ(·)
(
1− |J |

n

)t
∥∥∥∥∥∥
2

L2(π)

=
∑

∅̸=J⊆V

fJ(σ)
2

(
1− |J |

n

)2t

=

n∑
j=1

(
1− j

n

)2t(
n

j

)

≤
n∑

k=1

e−2jt/n

(
n

j

)
= (1 + e−2t/n)n − 1.

In other words,
4d(t) ≤ (1 + e−2t/n)n − 1.

Plugging in t = 1
2n log n+ cn, we get

4d(t) ≤
(
1 +

1

n
e−2c

)n

− 1

≤ ee
−2c

− 1

≤ 2e−2c,

with the last inequality holding as long as c > 1. Thus, as c → ∞, we have d( 12n log n+ cn) → 0.
Now for the lower bound on d(t). Notice that the Hamming weight W (σ) (number of +1s, say) of a spin

configuration σ ∼ π is distribued as a Binomial(n, 1
2 ) random variable, so it has mean n

2 and variance O(n).

On the other hand, suppose σ+
t is the state of the Glauber dynamics at time t, started from the all-plus

configuration, and let Rt denote the number of untouched spins. Then

E[W (σ+
t )|Rt] = Rt +

n−Rt

2
=

1

2
(n+Rt).

Now notice that by writing Rt =
∑

x∈V 1{x is untouched at time t}, we get

E[Rt] = n

(
1− 1

n

)t

,

and so by the tower property of expectation we obtain

E[W (σ+
t )] =

n

2

[
1 +

(
1− 1

n

)t
]
.
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We also have Var(W (σ+
t )) = O(n), and so Chebyshev’s theorem implies that d(t) is close to 1 as long as(

1− 1
n

)t ≥ C√
n
for some large constant C (i.e. d(t) → 1 as C → ∞).

Now notice that
(
1− 1

n

)t ≥ 1
2e

−t/n for t ≤ n2 and n > 1, so if t = 1
2n log n− cn, we get(

1− 1

n

)t

≥ 1

2
e−

1
2 logn+c =

ec

2

1√
n
.

So, as c → ∞ we have d( 12n log n− cn) → 1.

Main Result and Proof Idea

As we have seen, there is cutoff in the infinite-temperature case, at the time when the number of unresampled
spins is about

√
n. The main theorem is a manifestation of the intuition that the high-temperature regime

is similar to the infinite temperature case.
Instead of considering the number of untouched spins/Hamming weight, we will consider the expected

magnetization at a vertex,
mt = E[σ+

t (v)],

where σ+
t is the Glauber dynamics started from the all-plus state. In the β = 0 case, the number of untouched

spins being roughly
√
n corresponds to having a magnetization of roughly 1

2
√
n
. The constant factor 2 is not

too important, so we will define

tm = inf

{
t : mt <

1√
n

}
.

This is the location where the high-temperature Glauber dynamics experiences cutoff. By the way, here and
in the rest of the talk we switch back to continuous time.

Theorem 1. For any d > 1, there exists β0 = β0(d) such that whenever G is a d-regular transitive graph and
0 ≤ β < β0, the continuous-time Glauber dynamics for the Ising model on G satisfies tmix(ϵ) = tm +Oϵ(1).

The lower bound on the mixing time follows from a very similar argument to the one for the β = 0
case. Using the magnetization as the distinguishing statistic instead of the Hamming weight, we can apply
Chebyshev’s inequality to see that at time t = tm − s the chain is far from mixed: d(tm − s) → 1 as s → ∞.

The fact which roughly corresponds to the calculation that we did above with the Hamming weights and
untouched spins is the submultiplicativity of the expected magnetization. Specifically, we have

e−smt ≤ mt+s ≤ e−(1−βd)smt. (∗∗)

This is used to show that mtm−s is larger than es√
n
, which allows Chebyshev’s inequality to be used when s

is large, since the magnetization at the stationary distribution has mean 0 and variance of order 1
n , and the

magnetization of σ+
t also has variance of order 1

n . These variance bounds probably follow from a comparison
with the β = 0 case, but I’m not sure of the details.

I won’t prove the submultiplicativity of the expected magnetization, but we will use it again in the proof
of the upper bound on the mixing time, which will be our focus for the rest of the talk. That is to say, we
want to show that d(tm + s) → 0 as s → ∞. This is where information percolation enters.

The idea of information percolation is as follows. We can couple the Glauber dynamics starting at
all initial spin configurations together by using the same Poisson clocks on the vertices, and by coupling
the distributions of the resampled spins together in a monotone way (perhaps by using the same uniform
random variables to make the decisions at each step). Then, given the randomness used to run the Glauber
dynamics, we can look backwards from time tm+s to determine how much dependence there is on the initial
configuration.

Each vertex in G will look backwards to the last time its Poisson clock rang, and use the uniform random
variable to decide what the spin should be. This may require examining the neighboring spins at that time
in order to make the decision, but the key insight is that when the temperature is high enough, (∗) is close
to 1

2 , and so we can couple the dynamics in such a way that there is a good chance that a vertex will not
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have to even examine its neighbors to decide what spin to take; it will just be a uniform random spin. This
is called an “oblivious” update.

We will construct a network of dependence in the space-time slab in this way. The point is that when
temperature is high, the top layer of this network may not be connected to the bottom layer since there
are many oblivious updates which essentially sever the connection between the top and the bottom. If the
entire top of the network is disconnected from the entire bottom (the initial configuration), then the top is
independent of the bottom and hence it must be in the stationary distribution, since it is coupled perfectly
with a sample started from the stationary distribution.

As in the β = 0 case, however, this is more than we need for mixing. As long as the connections
between the top and bottom are sparse enough, the defects from stationarity will be small enough as to
be indistinguishable from standard fluctuations of the stationary distribution. This is the idea that we will
pursue in the rest of the talk.

Information Percolation Proof Sketch

Fix a time tm + s at which we will analyze the clusters described above. The randomness of the coupled
Glauber dynamics can be captured by a sequence of pairs (T i

x, U
i
x) at each vertex x, where T i

x is the time
at which x’s Poisson clock rings for the ith time, and U i

x is a uniform random variable. The result of the
resample at x at time T i

x will be −1 exactly when

U i
x <

exp(−βΣ)

exp(βΣ) + exp(βΣ)
=

1

2
(1 + tanh(βΣ)),

and it will be +1 otherwise, where Σ denotes the sums of spins at neighbors of x. Notice that |Σ| ≤ d, so

1

2
(1 + tanh(bΣ)) ≥ 1

2
(1− tanh(βd)).

So, if U i
x < 1

2 (1−tanh(βd)), then we will always get a −1 upon resampling, no matter what the configuration
at the neighbors of x. Similarly, if U i

x > 1
2 (1 + tanh(βd)), then we will always get a +1. Such updates are

called oblivious, and the above calculation shows that we have probability 1 − tanh(βd) for any particular
update to be an oblivious update.

This gives a branching process in the space-time slab V × [0, tm+ s]. To get σtm+s
x , we look backwards in

time, starting from (x, tm + s), until an update occurs at time T i
x. If the update is not oblivious, we need to

use information about the neighbors (and not just U i
x) to determine the spin σ

T i
x

x . In this case, the process
branches and we add a spatial edge e × {T i

x} for each edge e incident to x, and then continue the process
backwards in time from each of the neighboring vertices. If the update is oblivious however, we terminate
the process then and there. The only way there could be further temporal edges down the line is if another
vertex branches back and uses information about x.

This produces a graph in the space-time slab, which we denote by Hx (H for the “history” of x). The
slice at time t is Hx(t) = Hx ∩ V × {t}. We let HA =

⋃
x∈A Hx for any A ⊆ V , and similarly for HA(t).

The information percolation clusters are the connected components of HV . Note that each cluster can be
written as HA for some A ⊆ V , but not all HA form a complete cluster.

If HV (0) = ∅, then the configuration at time tm + s is independent of the configuration at time 0. This
means that, given the randomness encoded by the T i

xs and U i
xs, the final configuration will be the same,

regardless of the initial configuration. In particular, we could have started with a sample from the stationary
distribution and ended up with the same final state. This means that if we happen to have HV (0) = ∅,
we will have ended up with a truly exact sample from the stationary distribution. This is similar to the
“coupling from the past” technique.

However, as was the case with β = 0, we do not need to go so far. As long as HV (0) is sparse enough,
the fluctuations in the stationary distribution can absorb the imperfections, and we will have a good ap-
proximation of the stationary distribution. To analyze the clusters more precisely, we split them into three
types, denoted by the colors RED, BLUE, and GREEN.
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• A cluster HA is RED if HA(0) ̸= ∅.

• A cluster HA is BLUE if HA(0) = ∅ and A is a singleton.

• A cluster HA is GREEN otherwise (i.e. if HA(0) = ∅, but A is not a singleton).

If HA is a RED cluster, then the spins in A depend on the initial configuration. If HA is a BLUE cluster,
then A = {v} and the spin at v is a coin flip, independent of everything else. The GREEN clusters represent
the potentially complex behavior of interactions between sites under the stationary distribution.

Since the GREEN clusters are difficult to analyze, we will simply condition on them. Once this is
done, the distance to stationarity comes down to a fight between the RED and BLUE clusters. Under true
stationarity (with HV (0) = ∅), there would only be BLUE and GREEN clusters, and so conditioning on
the GREEN clusters would mean that the rest of the spin configuration consists of i.i.d. coin flips. Thus, one
way to get a handle on the distance to stationarity is to determine how far the configuration is from being
i.i.d., conditioned on the GREEN clusters. We will invoke a lemma of Miller and Peres to do this:

Lemma 2. Let W be a finite set, and let ν be the uniform measure on {±1}W . For each R ⊆ W , let φR be
a measure on {±1}R, and let µ be the measure on {±1}W obtained by sampling a subset R ⊆ W via some
measure µ̃, generating the spins of R via φR, and finally sampling W \R uniformly. Then

4∥µ− ν∥2TV ≤ E2|R∩R′| − 1,

where R,R′ are i.i.d. with law µ̃.

Proof. We have

4∥µ− ν∥2TV =
∥∥∥µ
ν
− 1
∥∥∥2
L1(ν)

≤
∥∥∥µ
ν
− 1
∥∥∥2
L2(ν)

=
∑

σ∈{±1}W

(
µ(σ)

ν(σ)
− 1

)2

ν(σ)

= 2|W |
∑

σ∈{±1}W

µ(σ)2 − 1,

where we have used the fact that ν(σ) = 2−|W |, and µ is a probability measure. Now notice that for any σ,

µ(σ) =
∑
R⊆W

µ̃(R)φR(σ|R)2−(|W |−|R|),

since to sample from µ, we sample a subset R, then sample the spins in R via φR, and finally sample the
rest of the spins uniformly. Therefore we have

2|W |
∑

σ∈{±1}W

µ(σ)2 = 2|W |
∑

σ∈{±1}W

∑
R,R′⊆W

µ̃(R)µ̃(R′)φR(σ|R)φR′(σ|R′)2−2|W |+|R|+|R′|

= 2−|W |
∑

R,R′⊆W

µ̃(R)µ̃(R′)2|R|+|R′|
∑

σ∈{±1}W

φR(σ|R)φR′(σ|R′).

Now, for any fixed R and R′, since φR(σ|R)φR′(σ|R′) only depends on σ|R∪R′ , we have∑
σ∈{±1}W

φR(σ|R)φR′(σ|R′) = 2|W |−|R∪R′|
∑

σ∈{±1}R∪R′

φR(σ|R)φR′(σ|R′).

The sum on the right-hand side is the probability that configurations σ ∼ φR and σ′ ∼ φR′ agree in R∩R′.
Since this is ≤ 1,

2|W |
∑

σ∈{±1}W

µ(σ)2 =
∑

R,R′⊆W

µ̃(R)µ̃(R′)2|R|+|R′|−|R∪R′|,

which finishes the proof via the inclusion-exclusion formula. ■
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We will apply this lemma with R representing VRED, the set of RED vertices (i.e. HRED(tm + s)),
conditional on HGREEN the set of GREEN clusters. In particular, we will take W = V \ VGREEN, so that
the measure we end up with is indeed uniform outside of VRED.

To see why this is useful, first notice that by Jensen’s inequality, we have

d(tm + s) ≤ max
σ0∈Ω

E [∥Pσ0
[σtm+s ∈ ·|HGREEN]− Pπ[σtm+s ∈ ·|HGREEN]∥TV]

= sup
HGREEN

max
σ0∈Ω

∥Pσ0
[σtm+s ∈ ·|HGREEN]− Pπ[σtm+s ∈ ·|HGREEN]∥TV .

Now, since σtm+s can be coupled exactly with the stationary distribution on VGREEN, projecting onto the
complement V \ VGREEN cannot decrease the total variation distance. In other words,

d(tm + s) ≤ sup
HGREEN

max
σ0∈Ω

∥∥Pσ0
[σtm+s|V \VGREEN

∈ ·|HGREEN]− Pπ[σtm+s|V \VGREEN
∈ ·|HGREEN]

∥∥
TV

≤ 2 sup
HGREEN

max
σ0∈Ω

∥∥Pσ0
[σtm+s|V \VGREEN

∈ ·|HGREEN]− νV \VGREEN

∥∥
TV

,

where νW is the uniform measure on {±1}W . Thus, the lemma implies that

d(tm + s) ≤
(

sup
HGREEN

E
[
2|VRED∩V ′

RED|
∣∣∣HGREEN

]
− 1

)1/2

.

It remains to analyze this exponential moment.
To do this, we need a few lemmas. For A ⊆ V , we say that A ∈ RED if A is the intersection of a complete

RED cluster with V × {tm + s}. In particular, we don’t allow any strict subsets of such sets, or unions of
tops of disjoint clusters. For any A ⊆ V , define

ΨA = sup
HV \A

P
[
A ∈ RED

∣∣HV \A, A ∈ RED or A ⊆ VBLUE

]
.

Then we have the following exponential upper bound:

Lemma 3. For any d ≥ 2 and λ > 0 there exist β0, C0 > 0 such that if β < β0 then for any A ⊆ V and
large enough n, we have

ΨA ≤ C0mtm+se
−λW(A),

where W(A) is the size of the smallest connected subgraph containing A.

For intuition, notice that A ∈ RED if the histories Hv for v ∈ A are all connected, and HA(0) ̸= ∅. The
requirement that the histories of A spatially connect is the source of the e−λW(A) factor, since the projection
of the cluster of A on V must be a connected subgraph containing A. The factor of

mtm+s = E[σ+
tm+s(v)] = P[σ+

tm+s(v) ̸= σ−
tm+s(v)]

occurs because this is the probability that the history of any single vertex will reach the bottom, as it is
exactly in this scenario that the extremal configurations do not couple.

Then we have a lemma which relates the worst-case probability ΨA that A is the top of a RED cluster
to the actual sets of RED vertices VRED:

Lemma 4. Let {YA,A′ : A,A′ ⊆ V } be a family of independent indicator random variables satisfying

P[YA,A′ = 1] = ΨAΨA′ .

The conditional distribution of two independent samples of the set of red vertices, VRED and V ′
RED can be

coupled to the YA,A′s such that

|VRED ∩ V ′
RED| ≤

∑
A∩A′ ̸=∅

|A ∪A′|YA,A′ .
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Intuitively, for a vertex v to be in both VRED and V ′
RED, there must be sets A and A′ which are both the

top slice of a full RED cluster, and for which v ∈ A and A′. The reason that the union appears instead of
the intersection has to do with the fact that we need to ensure that YA,A′ are independent (I think).

Anyway, using these two lemmas we can finish the proof. Since |A ∪A′| ≤ |A|+ |A′|, we obtain

sup
HGREEN

E
[
2|VRED∩V ′

RED|
∣∣∣HGREEN

]
≤ E

[
2
∑

A∩A′ ̸=∅(|A|+|A′|)YA,A′
]

=
∏

A∩A′ ̸=∅
E
[
2(|A|+|A′|)YA,A′

]
, (using independence)

≤
∏
v

∏
A,A′

v∈A∩A′

(
(2|A|+|A′| − 1)ΨAΨA′ + 1

)
(double-counting)

≤
∏
v

∏
A,A′

v∈A∩A′

(
2|A|+|A′|ΨAΨA′ + 1

)

≤ exp

n

(∑
A∋v

2|A|ΨA

)2
 .

Now, using the fact that ex − 1 ≤ 2x for x ∈ [0, 1], we obtain that

d(tm + s) ≤

exp

n

(∑
A∋v

2|A|ΨA

)2
− 1

1/2

≤
√
2n
∑
A∋v

2|A|ΨA.

Using Lemma 3 with λ = log(8d), we obtain∑
A∋v

2|A|ΨA ≤ C0mtm+s

∑
k

∑
A∋v

W(A)=k

2ke−λk

≤ C0mtm+s

∑
k≥1

2k2kdke−λk

= C0mtm+s

∑
k≥1

(4de−λ)k

= C0mtm+s.

This shows that d(tm + s) ≤ C1mtm+s
√
n. Finally, we conclude by using the submultiplicativity of the

expected magnetization (∗∗) from above, that

d(tm + s) ≤ C1e
−(1−βd)smtm

√
n = C1e

−(1−βd)s,

using the fact that mtm = 1√
n
by definition of tm. Thus, if β is small enough (as a function of d), we have

d(tm + s) → 0 as s → ∞.
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