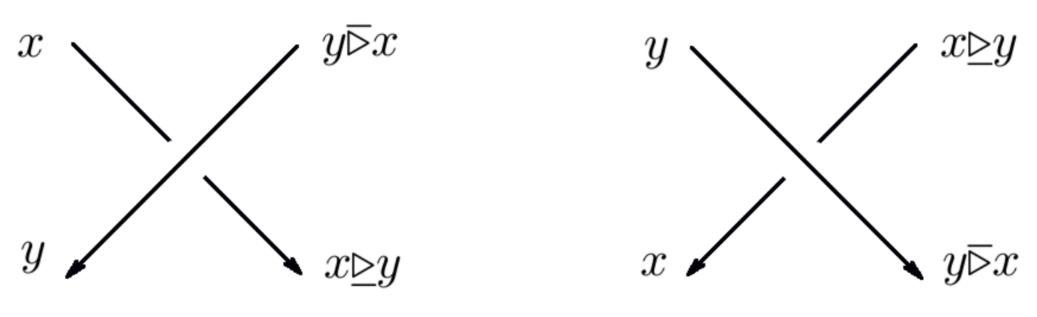
Biquandles

A *biquandle* is a set X with two binary operations $A = \frac{1}{2} \int \frac{1}{2}$ $\geq, \overline{\triangleright}$ such that for every $x, y, z \in X$, $\mathbf{1} x \succeq x = x \overleftarrow{\triangleright} x$ • The maps $\alpha_y(x) = x \triangleright y, \ \beta_y(x) = x \triangleright y$, and $S(x, y) = (y \triangleright x, x \triangleright y)$ are invertible. **3** The following exchange laws are satisfied: $(x \unrhd y) \trianglerighteq (z \trianglerighteq y) = (x \trianglerighteq z) \trianglerighteq (y \bowtie z)$

 $(x \mathop{\unrhd} y) \mathop{\triangleright} (z \mathop{\trianglerighteq} y) = (x \mathop{\triangleright} z) \mathop{\trianglerighteq} (y \mathop{\triangleright} z)$ $(x \,\overline{\triangleright}\, y) \,\overline{\triangleright}(z \,\overline{\triangleright}\, y) = (x \,\overline{\triangleright}\, z) \,\overline{\triangleright}(y \,\underline{\triangleright}\, z).$

The biquandle axioms mirror the three Reidemeister moves for link diagrams. For example, if the strands of a link are colored by elements of a biquandle so that the following relations hold at each crossing:



then the biquandle axioms are exactly what is required to allow such a coloring to be invariant under the Reidemeister moves.

Examples of biquandles include

- The trivial biquandle: $X = \{x\}$ is a singleton, with operations $x \triangleright x = x \triangleright x = x$.
- Constant action biquandles: X is any set, $\sigma: X \to X$ is any bijection. The operations are $x \ge y = x \overrightarrow{\triangleright} y = \sigma(x)$ for all $x, y \in X$.
- Alexander biquandles: X is any module over $\mathbb{Z}[t^{\pm 1}, r^{\pm 1}]$. Then $x \ge y = tx + (r - t)y$ and $x \triangleright y = ry$ define a biquandle.

Given any biquandle X, the number of X-colorings of a link diagram is an invariant and is called the biquandle counting invariant. If L is a link, the X-counting invariant of L is $\Phi_X^{\mathbb{Z}}(L)$.

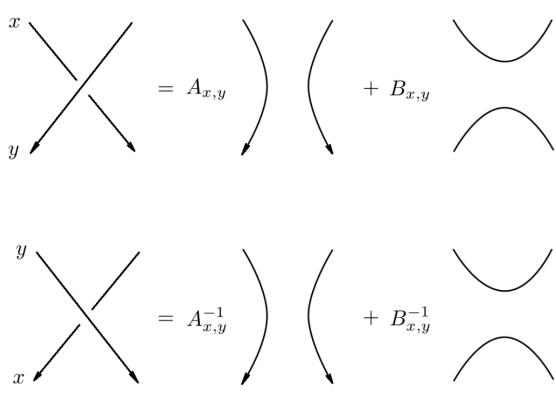
A Categorification of Biquandle Brackets

Adu Vengal

Mathematics Department, the Ohio State University, Advised by Prof. Sergei Chmutov

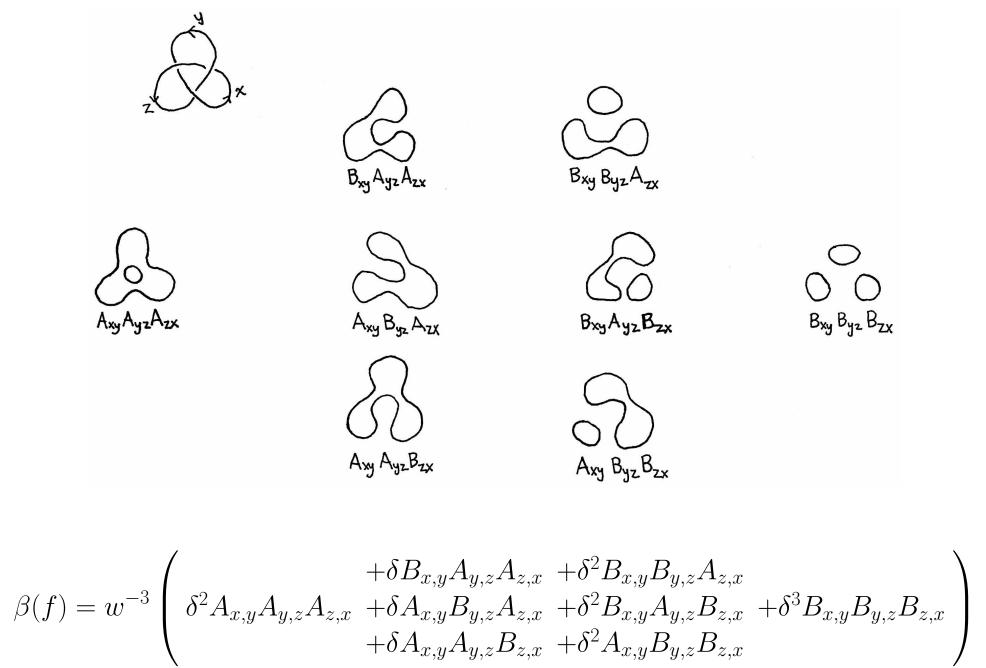
Biquandle Brackets

Let X be a biquandle and R a commutative unital ring. We would like to choose elements $A_{x,y}, B_{x,y} \in$ R^{\times} (for each $x, y \in X$), $w \in R^{\times}$, and $\delta \in R$ such that the element of R determined by the following skein relations:



with δ the value of a circle and w the value of a positive kink, is an invariant of X-colored links. Such a collection of elements of R is called a *biquandle* bracket and must satisfy three axioms found in [1].

It turns out that that w and δ are determined by A and B. So a biquandle bracket is denoted $\beta =$ (A, B) and it's value on a coloring f of a link is denoted $\beta(f)$. Here is an example computation:



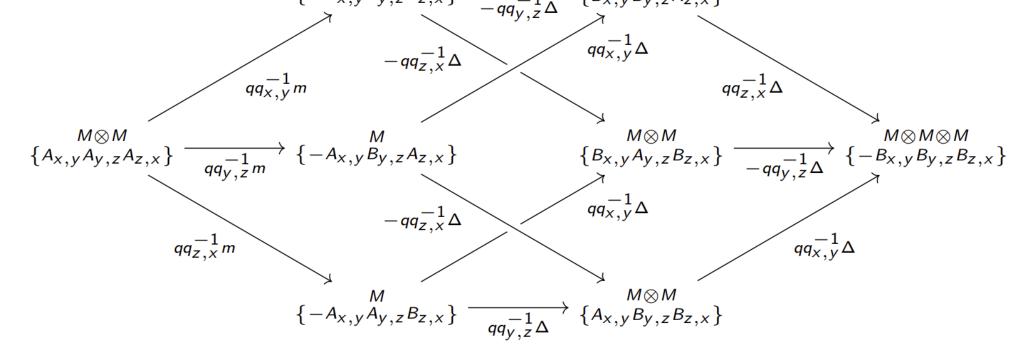
The following multiset-valued function on links is is link invariant which enhances $\Phi_X^{\mathbb{Z}}(L)$:

 $\Phi_X^{\beta}(L) = \{\beta(f) : f \text{ is an } X \text{-coloring of } L\}.$

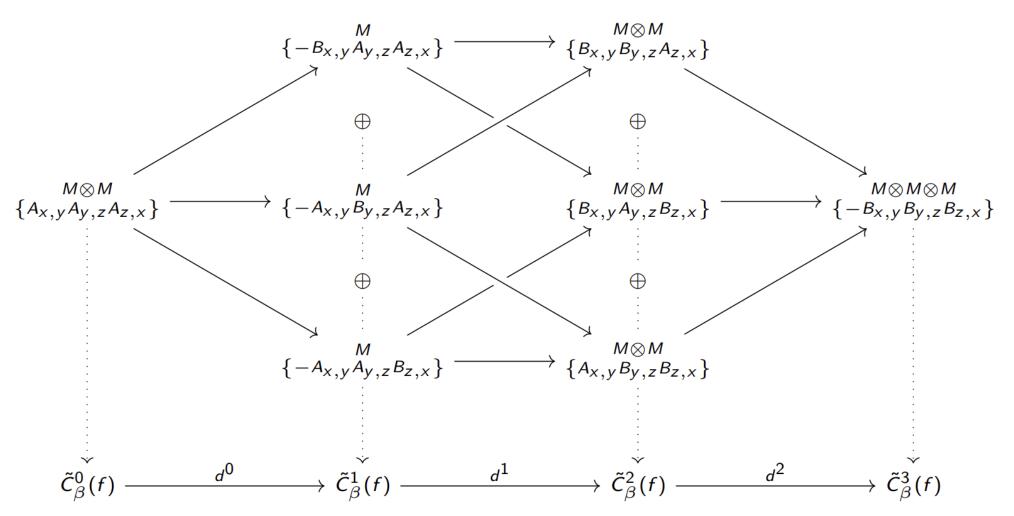
When $X = \{x\}$ is the trivial biquandle, we can let $R = \mathbb{Z}[q^{\pm 1}]$, and let $A_{x,x} = q$ and $B_{x,x} = q^{-1}$ to obtain the Jones polynomial as the single element of $\Phi_X^{\beta}(L)$. Additionally, using a computer, one can find many other biquandles and many many other biquandle brackets.

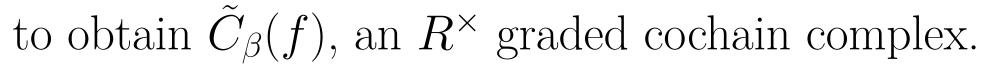
Vilas Winstein

Our Construction	
Let $\beta = (A, B)$ be an X-bracket with values in R.	9 L
1 Let $q_{x,y} = -\frac{B_{x,y}}{A_{x,y}}$ for all $x, y \in X$.	
2 Let $x_0 \in X$, and let $q = q_{x_0, x_0}$.	W
3 Let G be the group $\langle qq_{x,y}^{-1} : x, y \in X \rangle \leq R^{\times}$.	CI
• Let S be the R^{\times} -graded group algebra $\mathbb{Z}[G]$, with	D F
the R^{\times} -grading given by $\deg(g) = g$ for all $g \in G$.	CC
5 Let M be the R^{\times} graded S -module $S[t]/(t^2)$ with	
the additional grading given by $deg(1) = q$ and $deg(t) = q^{-1}$. M is a Frobenius algebra with the	is
following multiplication and comultiplication:	
$m: M \otimes M \to M$	
$ \begin{array}{ll} m: 1 \otimes 1 \mapsto 1, & 1 \otimes t \mapsto t, \\ t \otimes 1 \mapsto t, & t \otimes t \mapsto 0 \end{array} $	
	Th
$\Delta: M \to M \otimes M$ $\Delta: 1 \mapsto 1 \otimes t + t \otimes 1, \qquad t \mapsto t \otimes t$	mia
• Let L be a link and let f be an X-coloring of L.	cat
Perform splittings as in the figure to the left.	COL
\overline{O} Replace circles with copies of M and tensor	
adjacent copies together. Add maps between the	
modules as follows:	
$\{-B_{x,y}A_{y,z}A_{z,x}\} \xrightarrow{M \otimes M} \{B_{x,y}B_{y,z}A_{z,x}\}$	
$-qq_{x,y}^{-1}\Delta$ $qq_{x,y}^{-1}\Delta$	



This gives a cube with anti-commutative faces. [®]Sum the modules and maps along the columns:





he biquandle bracket generalizes the Jones polynoial, which Khovanov's homology construction [2] tegorifies. Our goal was to generalize Khovanov's onstruction to biquandle brackets and obtain \bigstar :

Our Construction, Continued

Let $C_{\beta}(f)$ be the shifted cochain complex:

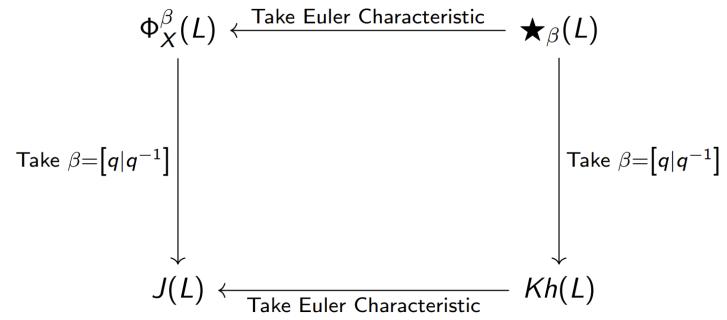
 $C_{\beta}(f) = \tilde{C}_{\beta}(f)[n_{-}]\{(-1)^{n_{-}}w^{-n_{+}}w^{n_{-}}\},$

where n_{\pm} is the number of positive or negative crossings in the link.

Finally, take the cohomology of $C_{\beta}(f)$ to obtain a complex $\mathcal{H}_{\beta}(f)$. The multiset

 $Bh_{\beta}(L) = \{\mathcal{H}_{\beta}(f) : f \text{ is an } X \text{-coloring of } L\}$ s an invariant of links.

Results



The Euler characteristic of $Bh_{\beta}(L)$ is actually $\operatorname{rdim}(S) \cdot \Phi_X^{\beta}(L)$, where $\operatorname{rdim}(S)$ is the R^{\times} -graded dimension of S which cannot always be factored out to yield $\Phi_X^{\beta}(L)$. In fact, $Bh_{\beta}(L)$ is actually isomorphic to a quotient of Kh(L) shifted by

$$\operatorname{rdim}(S) \left(\prod_{\tau^+} A_{x,y} A_{x_0,x_0}^{-1} \right) \left(\prod_{\tau^-} B_{x,y}^{-1} B_{x_0,x_0} \right).$$

This shift is the value of a *biquandle 2-cocycle invariant* which takes values in R^{\times}/G . Further work will explore how this new invariant compares to the related biquandle bracket.

References

[2] Mikhail Khovanov. A categorification of the jones polynomial. Duke Mathematical Journal, 101(3):359–426, 2000.

^[1] Sam Nelson, Michael E Orrison, and Veronica Rivera. Quantum enhancements and biquandle brackets. Journal of Knot Theory and Its Ramifications, 26(05):1750034, 2017.