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Toward a Categorification of Biquandle Brackets
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Mathematica packages for computations

Adu Vengal Vilas Winstein

Abstract

In their paper entitled “Quantum Enhancements and Biquandle Brackets,” Nelson, Orrison, and Rivera
introduced biquandle brackets, which are customized skein invariants for biquandle-colored links. These
invariants generalize the Jones polynomial, which is categorified by Khovanov homology. At the end of their
paper, Nelson, Orrison, and Rivera asked if the methods of Khovanov homology could be extended to obtain
a categorification of biquandle brackets.

We outline herein a Khovanov homology-style construction that is an attempt to obtain such a cate-
gorification of biquandle brackets. The resulting knot invariant does generalize Khovanov homology, but
the biquandle bracket is not always recoverable, meaning the construction is not a true categorification of
biquandle brackets.

However, the construction does lead to a definition that gives a “canonical” biquandle 2-cocycle associated
to a biquandle bracket, which, to the authors’ knowledge, was not previously known.

Additionally, the authors have created multiple Mathematica packages that can be used for experimental
computations with biquandles, biquandle brackets, biquandle 2-cocycles, and the newly-discovered canonical
biquandle 2-cocycle associated to a biquandle bracket.

We provide herein an explanation of these Mathematica packages, including example computations and an
appendix containing the full source code. The packages may also be downloaded from vilas.us/biquandles.
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Chapter 1

Introduction

A knot is an embedding of a circle into three-dimensional space, which can be thought of simply as a curve
that has a trajectory that does not intersect itself and that ends where it started so it forms a closed loop.
A link is an embedding of a collection of circles into three-dimensional space; this means multiple different
strands can be knotted together or knotted with themselves. The central question of knot theory asks when
two knots (or links) are the same in the sense that one can be continuously deformed into the other without
being cut or intersecting itself.

This problem may seem intractible at first, but many simplifications have been made. For example,
the use of knot diagrams translates the question into one of a more combinatorial nature about pictures
containing a finite amount of data. The Reidemeister moves are a collection of manipulations that can
be performed on such diagrams, and it is a powerful fact that equivalent links have diagrams which are
equivalent up to modification by the Reidemeister moves [9].

Knot invariants are another central tool in knot theory. These are mathematical objects that can be
assigned to links or link diagrams in a systematic way, such that when the link is continuously deformed in
legal ways, the object does not change. If one computes the value of an invariant on two different links (or
link diagrams) and finds two distinct values, this gives a proof that the two links are not equivalent.

The Jones polynomial is a particular knot invariant taking polynomial values, discovered by Vaughan
Jones, that is a central subject of study in knot theory. It can be calculated by computing smoothings of
knot diagrams and keeping track of combinatorial data along the way. This process can also be described
by a skein relation. For a full exposition of the Jones polynomial, see [5].

Khovanov homology is another knot invariant, which is a categorification of the Jones polynomial. The
values of this invariant are not polynomials, but rather they are sequences of modules obtained from the
cohomology of a certain cochain complex. Khovanov homology categorifies the Jones polynomial because,
when a particular quantity (the graded Euler characteristic) is measured from the sequence of modules in the
value of the invariant, one recovers the Jones polynomial. For more details and a construction of Khovanov
homology, see [6] or [1].

Biquandles are a type of algebraic structure whose axioms parallel the Reidemeister moves of knot theory.
Because of this, biquandles are the basis for many invariants of knots and links. In particular, the biquandle
counting invariant is simply the number of ways to color a link diagram with elements of a biquandle so that
relationships between colors at crossings are satisfied. In [8], Sam Nelson et. al. introduced an enhancement
of the biquandle counting invariant, called the biquandle bracket. This is a type of skein relation depending
on biquandle colorings. A biquandle 2-cocycle is another type of function on a biquandle that can be used
to define a link invariant, arising from cohomology theory.

Biquandle brackets generalize the Jones polynomial in a natural way. In [8], Nelson et. al. asked
whether a Khovanov homology-style categorification of the biquandle bracket is possible. Herein, we provide
a construction of what seems (to the authors) to be the most natural step from Khovanov homology toward a
categorification of biquandle brackets. The invariant we obtain generalizes Khovanov homology, but it is not
a true categorification of all biquandle brackets: in some cases, the biquandle bracket cannot be recovered
from our invariant.

Nevertheless, the invariant does lead to a way of assigning a biquandle 2-cocycle to any given biquandle
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bracket, and the relationship and power of the invariant associated with this new biquandle 2-cocycle may be
of interest. To this end, we provide some Mathematica packages that can be used to do experimentations with
biquandles, biquandle brackets, and biquandle 2-cocycles, including this new canonical biquandle 2-cocycle
associated with a biquandle bracket.

This paper is structured as follows. In chapter 2, we review definitions which we will require for our
results, including the definition of biquandles, biquandle brackets, and biquandle 2-cocycles. In chapter 3,
we present the construction of our new invariant, which we call “biquandle cohomology,” and we provide
a proof of its invariance as well as an explanation of the canonical 2-cocycle associated with a biquandle
bracket. Section 3.5 also provides some questions for further inquiry. In chapter 4, we present documentation
for the Mathematica packages used by the authors to conduct experiments and now made available alongside
this paper at vilas.us/biquandles. Finally, in appendix A, we provide the full source code for all of these
mathematica packages.

This work has been done as a part of the undergraduate research program “Knots and Graphs” at the
Ohio State University, during the summer of 2019. It is a continuation of work done in the same program
during the summer of 2018 in [4]. We are grateful to the OSU Honors Program Research Fund and to the
NSF-DMS #1547357 RTG grant: Algebraic Topology and Its Applications for financial support. In addition,
we are grateful to our advisor, Sergei Chmutov, for his help.
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Chapter 2

Preliminaries

To establish our notation and introduce the topics, we provide the following definitions. We follow the
notation and conventions in [8].

2.1 Biquandles
Definition 1. A biquandle is a set X with two binary operations B,B such that ∀x, y, z ∈ X,

(i) xBx = xBx

(ii) The maps αy(x) = xB y, βy(x) = xB y, and S(x, y) = (yBx, xB y) are invertible.

(iii) The following exchange laws are satisfied:

(xB y)B(zB y) = (xB z)B(yB z)

(xB y)B(zB y) = (xB z)B(yB z)

(xB y)B(zB y) = (xB z)B(yB z).

If xB y = x for all x, y ∈ X, then X is called a quandle. When there is no danger of confusion, we will
write the biquandle (X,B,B) simply as X.

Remark 1. If X is a finite biquandle, we can represent all of the information about it in two operation
tables. Fix some ordering on the elements of X and label them with the integers 1 through n (where n is the
size of X). Then the operation table for B is an n× n matrix of integers in {1, . . . , n}, and the (i, j) entry
of this matrix is iB j. The operation table for B is defined similarly. For example, the following operation
tables represent a biquandle on three elements.

B :

2 1 2
1 3 3
3 2 1

 B :

3 3 3
2 2 2
1 1 1


The conditions in the biquandle definition are analogous to the Reidemeister moves in knot theory when

we interpret xB y as “x passing under y” and xB y as “x passing over y” in the following way:

Fix a biquandle X. An X-coloring of an oriented knot (or link) diagram L is an assignment of an
element of X to each strand in the diagram such that the above relationships hold at each crossing. Then
the biquandle axioms are precisely what is required for the X-coloring to be preserved as Reidemeister moves
are performed on the diagram. For this reason, the number of X-colorings of a diagram is a link invariant,
called the biquandle counting invariant, and denoted ΦZ

X(L).
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2.2 Biquandle Brackets
In [8], an enhancement of the biquandle counting invariant is introduced. For each X-coloring of D, one can
perform a smoothing operation similar to the construction in the Kauffman bracket, but this time keeping
track of the colorings at each crossing as follows:

Where for each x, y ∈ X, Ax,y and Bx,y are invertible elements of some commutative ring with unity R.
Additionally, the removal of a circle with no crossings should correspond to multiplication by some element
δ ∈ R, and to correct for the additional states generated by kinks (from the first Reidemeister move), a
writhe factor should be included, which can simply be an appropriate power of some element w ∈ R×. For
the bracket to be an invariant of an X-colored link, it should not change when Reidemeister moves are
applied and the X-coloring is updated correspondingly. Below are the conditions that must be satisfied by
A,B, δ, and w for this to be true. For more details, see [8].

Definition 2. A biquandle bracket on a biquandle X with values in commutative ring (with unity) R is a
pair of maps A,B : X ×X → R× and two distinguished elements δ ∈ R,w ∈ R× which satisfy the following
conditions.

(i) For all x ∈ X, δAx,x +Bx,x = w and δA−1
x,x +B−1

x,x = w−1.

(ii) For all x, y ∈ X, δ = −Ax,yB−1
x,y −A−1

x,yBx,y.

(iii) For all x, y, z ∈ X, all of the following equations hold.

Ax,yAy,zAxB y,zB y = Ax,zAyB x,zB xAxB z,yB z,

Ax,yBy,zBxB y,zB y = Bx,zByB x,zB xAxB z,yB z,

Bx,yAy,zBxB y,zB y = Bx,zAyB x,zB xBxB z,yB z,

Ax,yAy,zBxB x,zB y = Ax,zByB x,zB zAxB z,yB z +Ax,zAyB x,zB xBxB z,yB z

+ δAx,zByB x,zB xBxB z,yB z +Bx,zByB x,zB xBxB z,yB z,

Bx,zAyB x,zB xAxB z,yB z = Bx,yAy,zAxB y,zB y +Ax,yBy,zAxB y,zB y

+ δBx,yBy,zAxB y,zB y +Bx,yBy,zBxB y,zB y.

Note that we denote A(x, y) and B(x, y) by Ax,y and Bx,y. Additionally, since δ and w are determined
by the maps A and B, we will generally denote a biquandle bracket simply by the pair β = (A,B). Finally,
if β is a biquandle bracket on a biquandle X taking values in R, then we say β is an X-bracket.

If f is a coloring of an oriented link, the value of the biquandle bracket β on f is denoted β(f).

Example 1. Here is a computation of the value of β(f) for a coloring f (shown at the top-left corner) of
the trefoil knot:
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β(f) = w−3

 +δBx,yAy,zAz,x +δ2Bx,yBy,zAz,x
δ2Ax,yAy,zAz,x +δAx,yBy,zAz,x +δ2Bx,yAy,zBz,x +δ3Bx,yBy,zBz,x

+δAx,yAy,zBz,x +δ2Ax,yBy,zBz,x

 .

The oriented link invariant corresponding to β, denoted ΦβX(L) simply the multiset of all biquandle
bracket values, one for each valid X-coloring of the diagram:

ΦβX(L) = {β(f) : f is a valid X-coloring of L}.

Note that ΦβX(L) is an enhancement of the biquandle counting invariant ΦZ
X(L) because the counting invariant

is simply the cardinality of this multiset.

Remark 2. If X is finite and we fix an ordering X = {x1, . . . , xn}, we can encapsulate all of the information
about a biquandle bracket in a presentation matrix. This is an n by 2n matrix M over R with entries
Mi,j = Axi,xj and Mi,n+j = Bxi,xj for i, j ∈ {1, 2, ..., n}.

Example 2. Let X be the biquandle given by the following operation table.

B :

[
2 2
1 1

]
B :

[
2 2
1 1

]
This biquandle’s operations simply flip the left operand, regardless of the right operand. Thus, in any
X-colored link diagram, if one follows a particular strand, the color will alternate at every crossing. Let
R = Z2[t]/

(
1 + t+ t3

)
. Then the following presentation matrix defines an X-bracket.[

1 1 + t t t+ t2

1 + t2 1 1 t

]
This biquandle bracket was found in [8].

Example 3. Let X be any biquandle, and let R be any commutative ring. If Ax,y = a and Bx,y = b
for all x, y ∈ X and some a, b ∈ R×, then the X-bracket (A,B) is called a “constant” biquandle bracket
(the reader should verify that this does indeed define an X-bracket). In general, the value of a biquandle
bracket on links is unchanged when all values of Ax,y and Bx,y are scaled by a common factor of R× (see
[8]). So, dividing through by b, the above bracket gives the same invariant as the bracket Ax,y = a

b , Bx,y = 1

for all x, y ∈ X. By considering the maps A,B as instead taking values in R
[(
a
b

)±1/2
]
, we can make the

substitution q2 = a
b and divide everything through by q to yield the equivalent bracket (when treated over
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R
[(
a
b

)±1/2
]
), Ax,y = q, Bx,y = q−1 for all x, y ∈ X. Now, for any particular X-coloring of a link, the value

of this bracket is evidently the Jones polynomial of the link, which is a Laurent polynomial in the variable q2.
Hence the invariant itself still takes values in R rather than R

[(
a
b

)±1/2
]
. Therefore, the value of a constant

biquandle bracket (with Ax,y = a and Bx,y = b) is a multiset containing the Jones polynomial evaluated at
a
b , and it contains this value with multiplicity equal to the number of valid X-colorings of the link.

Note in the above construction that we only obtain the value of the Jones polynomial at q ∈ R. If we
want to retain the full power of the Jones polynomial, we can take R = Z[t, t−1] and take q = t.

2.3 Biquandle 2-Cocycles
Next, we define a biquandle 2-cocycle following the notation of [8].

Definition 3. Let X be a biquandle, and let G be an abelian group (written multiplicatively here). A
function φ : X ×X → G is a biquandle 2-cocycle if, for all x, y, z ∈ X, we have

(i) φ(x, x) = 1,

(ii) φ(x, y) · φ(y, z) · φ (xB y, zB y) = φ(x, z) · φ (yBx, zBx) · φ (xB z, yB z).

A 2-cocycle φ can be used to define the biquandle 2-cocycle invariant, as seen in [2]. Namely, for each
valid X-coloring of a link, compute the value

∏
τ φ (xτ , yτ )

ε(τ), where τ ranges across all crossings in the
colored link, ε(τ) is the sign (either +1 or −1) of τ , and xτ , yτ are the biquandle colors of the arcs on the
left side of the crossing when it is oriented so that strands point downwards, following a similar convention
to the biquandle bracket above. The value of the biquandle 2-cocycle invariant associated to φ is then the
multiset of all such values, one for each valid X-coloring of the link.

Remark 3. Again if X is finite, we construct a presentation matrix for a cocycle in the same fashion as
with the biquandle brackets; fixing the ordering X = {x1, . . . , xn}, the presentation matrix P for a cocycle
is an n× n matrix over A with entries Pi,j = φ (xi, xj).

Example 4. Let X be the biquandle described in Example 1 above. Let A be the free abelian group on
two symbols, a and b. Then the following presentation matrix defines a biquandle 2-cocycle φ : X ×X → A.[

1 a
b 1

]
The invariant corresponding to φ is trivial on all knots (single-component links). In fact, more is true: for
any X-colored knot diagram, at any crossing τ , we have xτ = yτ (so that φ (xτ , yτ ) = 1). Additionally, for
a two-component link, the invariant corresponding to φ is the multiset

{
1, 1, (ab)

`
, (ab)

`
}
, where ` is the

linking number of the two components of the link. For a proof of these facts, see example 3 in [4].
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Chapter 3

Biquandle Homology

We now present the construction of a Khovanov homology-style invariant of links which extends Khovanov’s
original construction in [6].

3.1 Group-Graded Modules and Complexes
Khovanov’s original construction involves taking the homology of chain complexes of Z-graded modules.
Calculating the graded Euler characteristic of these homologies yields the Jones polynomial in a vari-
able q, where q is the generator of Z, and the additive structure of Z is written multiplicatively (i.e.
Z = {. . . , q−2, q−1, 1, q, q2, . . . }). With the aim of obtaining the biquandle bracket as the graded Euler
characteristic of a homology invariant, we need to extend our grading from Z to an arbitrary abelian group.

Definition 4. If H is an abelian group and S is a commutative ring, an H-graded S-module is an S-module
M which can be decomposed as a direct sum

M =
⊕
h∈H

Mh

of S-modules. If a ∈Mh, we say that a has degree h, and write deg(a) = h.

Note that direct sums and tensor products of H-graded S-modules are still H-graded S-modules. If we
have

M =
⊕
h∈H

Mh and N =
⊕
h∈H

Nh,

then the direct sum can be written as

M ⊕N =
⊕
h∈H

Mh ⊕Nh,

so an H-grading can be given by (M ⊕N)h = Mh ⊕Nh. Also, the tensor product can be written as

M ⊗N =
⊕
h∈H

⊕
gf=h

Mg ⊗Nf

 ,

and an H-grading can be given by
(M ⊗N)h =

⊕
gf=h

Mg ⊗Nf .

Definition 5. If M =
⊕

h∈HMh is an H-graded S-module, the graded dimension of M is

rdim(M) =
∑
h∈H

h · rank(Mh).

This is a (possibly infinite) formal sum of group elements with coefficients in Z.
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Definition 6. If M is an H-graded S-module, we can shift the grading of M by an element g ∈ H and
obtain a new H-graded S-module M{g}. The underlying module structure is the same, but if a ∈ M has
degree h, then the same element a ∈M{g} has degree hg.

Definition 7. A cochain complex of H-graded S-modules is a sequence C =
(
Ci
)
i∈Z of H-graded S-modules

along with differentials di : Ci → Ci+1 such that di+1 ◦ di = 0 for all i ∈ Z. We say that the differentials are
degree-preserving if deg(di(a)) = h whenever deg(a) = h.

Definition 8. The cohomology sequence of a chain complex (C, d) ofH-graded S-modules isH(C) = (Hi)i∈Z,
where

Hi = im(di−1)/ ker(di).

Note that each Hi is again an H-graded S-module.

Definition 9. If C = (Ci)i∈Z is a sequence of H-graded S-modules, the graded Euler characteristic of C is

χ(C) =
∑
i∈Z

(−1)i rdim(Ci).

Note that if the differentials of a chain complex C are degree-preserving, then the Euler characteristic of the
cohomology sequence is the same as the Euler characteristic of the original chain complex: χ(C) = χ(H(C)).

Definition 10. If C = (Ci)i∈Z is a cochain complex of H-graded S-modules, we can shift the index of C by
an integer j and obtain a new cochain complex C[j]. Again, the underlying complex structure is the same
aside from this shift, we simply have C[j]i = Ci−j , and the differential maps are shifted accordingly.

Note that we will also use the notation C{g} to denote a cochain complex derived from C by shifting
the internal grading of each H-graded S-module in C by the element g ∈ H. So {·} always corresponds to
a shift of the H-grading, and [·] always corresponds to a shift of the index of the complex.

3.2 The Ring S and the Algebra M

Throughout the rest of the paper, let X be a fixed biquandle with a distinguished element x0, and let R be
a fixed commutative ring. Also let β = (A,B) be a fixed X-bracket taking values in R, which will be the
basis for our construction.

For each x, y ∈ X, let

qx,y = −Bx,y
Ax,y

,

and let q = qx0,x0
. Let G be the group generated by the elements q−1

x,yq of R×:

G =

〈
q

qx,y
: x, y ∈ X

〉
≤ R×.

Finally, let S be the R× graded group algebra Z[G], with the R×-grading given by deg(g) = g for all g ∈ G.
Now let M be the R×-graded S-module S[t]/(t2) with the additional grading given by deg(1) = q and

deg(t) = q−1. This means that, for example, the element gt ∈M has degree gq−1, while the element g ∈M
has degree gq. M is a Frobenius algebra with the following multiplication and comultiplication operations:

m : M ⊗M →M

m : 1⊗ 1 7→ 1, 1⊗ t 7→ t,

t⊗ 1 7→ t, t⊗ t 7→ 0.

∆ : M →M ⊗M
∆ : 1 7→ 1⊗ t+ t⊗ 1, t 7→ t⊗ t.

Both of these operations are “degree-lowering,” in the sense that the degree of the image of an element is
q−1 times the degree of the element in the domain.
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3.3 Construction of the Cohomology Invariant
We are now ready to present the construction of the link invariant. Suppose f is an X-coloring of an oriented
link L. Perform smoothings as in the construction of the biquandle bracket link invariant (recall the image
from example 1, which has been replicated below):

There will be 2n smoothings in total, where n is the number of crossings in the link diagram. We arrange
these smoothings as the vertices of an n-dimensional cube, ordered from left to right by the number of B-type
splittings in the smoothing.

Now replace each circle in each smoothing with a copy of M and tensor adjacent copies together. Shift
the R×-grading of each resultant S-module by the coefficient extracted by the smoothing, as follows:

M

{−Bx,yAy,zAz,x}
M⊗M

{Bx,yBy,zAz,x}

M⊗M
{Ax,yAy,zAz,x}

M

{−Ax,yBy,zAz,x}
M⊗M

{Bx,yAy,zBz,x}
M⊗M⊗M

{−Bx,yBy,zBz,x}

M

{−Ax,yAy,zBz,x}
M⊗M

{Ax,yBy,zBz,x}

Next, we add maps in between the modules to form a cube. The maps are derived from the Frobenius
algebra structure on M , which mimics the data of a topological quantum field theory. Thus, if we’d like to
form a map M ⊗M →M , we’ll use the multiplication map m, and if we’d like to form a map M →M ⊗M ,
we’ll use the comultiplication map ∆.

The multiplication and comultiplication maps should be applied to the tensor factors involved in a
cobordism between the two images that the modules correspond to. For example, the upper rightmost map
in the following diagram is applied to the tensor factors corresponding with the cobordism taking the circle
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at the bottom of the top-right smoothing to the pair of circles at the bottom of the right-most smoothing of
the link diagram.

Each map must be augmented by multiplication by a particular element of G so that the end result will
be a cochain complex with degree-preserving differentials. The element of G to be multiplied is simply the
quotient of the shift applied to the target space over the shift applied to the domain.

This yields a cube with commutative faces. But we will be summing the modules along the columns, and
we’d like a cochain complex, so we need the faces of the cube to be anti -commutative. This is why some of
the maps in the following image have minus signs. For a detailed explanation of the position of the minus
signs, see Section 3.2 of [1].

M

{−Bx,yAy,zAz,x}
M⊗M

{Bx,yBy,zAz,x}

M⊗M
{Ax,yAy,zAz,x}

M

{−Ax,yBy,zAz,x}
M⊗M

{Bx,yAy,zBz,x}
M⊗M⊗M

{−Bx,yBy,zBz,x}

M

{−Ax,yAy,zBz,x}
M⊗M

{Ax,yBy,zBz,x}

−qq−1
y,z∆

−qq−1
z,x∆

qq−1
z,x∆qq−1

x,ym

qq−1
z,xm

qq−1
y,zm

qq−1
x,y∆

−qq−1
y,z∆

qq−1
y,z∆

qq−1
x,y∆

qq−1
x,y∆

−qq−1
z,x∆

Now take the direct sum of the modules and maps along the columns to obtain a sequence C̃β(f) of
R×-graded H-modules with maps between them. This in fact constitutes a cochain complex because the
faces of the cube are anti-commutative. Each element in each module will have two images in each target
space under the double-differential map, corresponding to the two different ways to get around the square
between the domain and target. And these images will cancel out, leading to di+1 ◦ di = 0.

M

{−Bx,yAy,zAz,x}
M⊗M

{Bx,yBy,zAz,x}

⊕ ⊕

M⊗M
{Ax,yAy,zAz,x}

M

{−Ax,yBy,zAz,x}
M⊗M

{Bx,yAy,zBz,x}
M⊗M⊗M

{−Bx,yBy,zBz,x}

⊕ ⊕

M

{−Ax,yAy,zBz,x}
M⊗M

{Ax,yBy,zBz,x}

C̃0
β(f) C̃1

β(f) C̃2
β(f) C̃3

β(f)
d0 d1 d2

Now we must apply a shift to account for the writhe of the original link. Let n+ be the number of positive
crossings in L and let n− be the number of negative crossings. Recall that w = δAx0,x0

+ Bx0,x0
∈ R×. So

define Cβ(f) to be the following shifted cochain complex:

Cβ(f) = C̃β(f)[n−]{(−1)n−w−n+wn−}.
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Finally, take the cohomology of Cβ(f) to obtain a sequence Hβ(f) = H(Cβ(f)) of R×-graded S-modules.
This is an invariant of X-colored oriented links f . If we want to start with an uncolored oriented link we
must consider all X-colorings simultaneously as follows:

Bhβ(L) = {Hβ(f) : f is a valid X-coloring of L}.

The quantity Bhβ(L) is an invariant of oriented links L. This will be proved in the next section.

Example 5. When we take β to be any constant biquandle bracket as in example 3, we have qx,y = q for
all x, y ∈ X. Suppose we also started with R = Z[t, t−1] and q = t so that the biquandle bracket value
is the same as the Jones polynomial. Thus, as can be seen by following Khovanov’s construction [6] or in
Bar-Natan’s paper [1], Hβ(f) is isomorphic to the Khovanov homology invariant of L, denoted Kh(L).

Now, if instead of Z[t, t−1] we had started with some other ring R, the biquandle bracket value is the
Jones polynomial evaluated at q. If q satisfies some nontrivial algebraic relations in R, then we will not
recover the full Kh(L). Instead, we will have to quotient out each module in the Kh(L) by the relations
satisfied by q. Since Kh(L) is an invariant of links L, the object we obtain will still be invariant of links.

Also, since β is a constant biquandle bracket, Hβ(f) will not depend on the coloring f of L, only the
link itself. So Bhβ(L) is a multiset containing a quotient of Kh(L) with multiplicity equal to the number of
X-colorings of L. This shows that Bhβ(L) is an invariant of links when β is a constant biquandle bracket.

Remark 4. Bhβ(L) is not a true categorification of the biquandle bracket invariant ΦβX(L) in the sense
that Kh(L) is a categorification of the Jones polynomial. This is because the Euler characteristic of Bhβ(L)

is actually rdim(S) · ΦβX(L). The biquandle bracket invariant ΦβX(L) can be considered as the “Euler char-
acteristic over S,” but when actually computing the Euler characteristic of the graded homology sequence,
the grading of S itself cannot be ignored. Note that rdim(S) is a formal sum of the elements of G.

For some particular biquandle brackets, rdim(S) is an invertible element of R, and in these cases one can
recover ΦβX(L) from Bhβ(L). For example, in the situation in the first part of example 5 above, G is the
trivial group since q = qx,y for all x, y ∈ X. Thus rdim(S) = 1. This is unsurprising since in this situation
we exactly recover Khovanov homology as a true categorification of the Jones polynomial.

Examples of biquandle brackets which lead to rdim(S) being a non-invertible element of R may be found
in [4]. In these situations, one can still ask how much information about the biquandle bracket is retained
in the Euler characteristic of Bhβ(L). These questions are strongly related to questions about the canonical
biquandle 2-cocycle associated with a biquandle bracket, which will be discussed in the next section.

3.4 Proof of Invariance and the Canonical 2-Cocycle
To prove that Bhβ(L) is an invariant of oriented links L it is sufficient to prove that Hβ(f) is an invariant of
X-colored oriented links f . For this, we will actually prove that Hβ(f) is isomorphic to a shift of a quotient
of Kh(L), the original Khovanov homology invariant of L. The shift itself turns out to be an invariant of
X-colored links, and it is obtained from a particular biquandle 2-cocycle. In this way, it becomes possible
to canonically assign a biquandle 2-cocycle to an biquandle bracket. First we need a lemma.

Lemma 1. Let G be an abelian group and let M be a Z[G]-module graded by some group H ≥ G such that
deg(gm) = g deg(m) for all m ∈M and g ∈ G. Then M ∼= gM as H-graded Z[G]-modules for all g ∈ G.

Proof. Suppose M =
⊕

h∈HMh. Then the “multiplication-by-g” map is an isomorphism Mh → Mgh, since
the “multiplication-by-g−1” map is the inverse. Then

gM =
⊕
h∈H

gMh =
⊕
h∈H

Mgh
∼=
⊕
h′∈H

Mh′ = M,

since gH = H because H is a group. �

Let Khβ(L) denote the quotient of Khovanov homology described in example 5 above. Both Hβ(f) and
Khβ(L) are sequences of homologies of cochain complexes. The claim is now that Hβ(f) ∼= Khβ(L){Zβ(f)},
where Zβ(f) is an invariant of X-colored links f . So to see that Hβ(f) and Khβ(L){Zβ(f)} are isomorphic,
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it suffices to construct an isomorphism of the cochain complexes they are derived from. And, since both
cochain complexes are direct sums of cube diagrams, it suffices to construct an isomorphism of cubes, by
which we mean a collection of isomorphisms from each vertex in one cube to the corresponding vertex of
the other cube such that the squares thus adjoined to each edge commute. We henceforth construct the
isomorphism of the cube used to construct Hβ(f) with the cube used to construct Khβ(L) (before the final
writhe-correcting shift, which will be the same for both complexes).

Starting with the cube in the construction of Hβ(f), shift all of the R×-gradings by the grading shift
applied to the left-most vertex (in the example above, this would be Ax,yAy,zAz,x). This yields a cube where
the left-most vertex is a tensor power of M with no shift applied, and each other vertex will be a tensor
power of M with a shift that can be written as a product of the elements qx,y ∈ R×. The maps in the cube
are unchanged by this shift, since the coefficient on a map is the quotient of the shifts on the target and
domain spaces.

For each vertex M⊗k{
∏j
i=1 qxi,yi} of the shifted cube, the “multiplication-by-(

∏j
i=1 q

−1qxi,yi)” map is
an isomorphism M⊗k{

∏
qx,y} → M⊗k{qj} by lemma 1. And these maps assemble into an isomorphism of

cubes because each edge in the cube is a map of the form q−1
z,wq∆ or q−1

z,wq m, and the following two squares
commute:

M⊗k{
∏j
i=1 qxi,yi} M⊗(k+1){qz,w

∏j
i=1 qxi,yi}

M⊗k{qj} M⊗(k+1){qj+1}

M⊗k{
∏j
i=1 qxi,yi} M⊗(k−1){qz,w

∏j
i=1 qxi,yi}

M⊗k{qj} M⊗(k−1){qj+1}

q−1
z,wq∆

multiplication-by-(
∏j

i=1 q
−1qxi,yi) multiplication-by-(q−1qz,w

∏j
i=1 q

−1qxi,yi)

∆

q−1
z,wq m

multiplication-by-(
∏j

i=1 q
−1qxi,yi) multiplication-by-(q−1qz,w

∏j
i=1 q

−1qxi,yi)

m

Thus we have an isomorphism from the shifted cube to a cube with only powers of q as shifts and with no
coefficients on the maps between vertices. This is almost exactly the cube in the construction of Kh(L).
However, as noted before, this q may satisfy some algebraic relation in R and so it is really a replica of the
quotient Khβ(L). Additionally, the cube for Kh(L) contains modules defined over a ring that has trivial
grading, whereas the cube we have now contains modules defined over S, which may have nontrivial R×-
grading (see remark 4 above).

Thus, what we truly obtain is an isomorphism between Hβ(f) and Khβ(L) shifted by the grading shift
applied to the left-most vertex in the original cube (again, this would be Ax,yAy,zAz,x in the above example)
and shifted by rdim(S). The shift applied to the left-most vertex in the original cube turns out to be(∏

τ+

Ax,y

)(∏
τ−

(−B−1
x,y)

)
,

where the first product is taken over all positive crossings τ+ in the link and the second product is taken
over all negative crossings τ−, and (x, y) is the X-coloring at the crossing in question. Multiplying by the
writhe correction shift and rdim(S), we find that

Zβ(f) =

(∏
τ+

Ax,yA
−1
x0,x0

)(∏
τ−

B−1
x,yBx0,x0

)
· rdim(S)

is the correct shift to obtain Hβ(f) ∼= Khβ(L){Zβ(f)}.
Since all of the factors in the two products defining Zβ(f) are invertible elements of R, and since rdim(S)

is a formal sum of all elements in G ≤ R×, we can view this shift as taking values in the abelian quotient
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group R×/G. Now it becomes clear that Zβ(f) is in fact the value of a biquandle 2-cocycle invariant on f ;
the associated 2-cocycle is φβ : X × X → R×/G, defined by φβ(x, y) = Ax,yA

−1
x0,x0

· G. It is clear that on
positive crossings τ+, the value of Zβ(f) is derived from φβ . For negative crossings, we observe that

Ax,yA
−1
x0,x0

B−1
x,yBx0,x0

= q−1
x,yq ∈ G

so that B−1
x,yBx0,x0 is the inverse of Ax,yA−1

x0,x0
, mod G. The biquandle 2-cocycle φβ is called the canonical

2-cocycle associated with a biquandle bracket β.
Thus Zβ(f) is an invariant of X-colored links f . Since Khβ(L) is an invariant of oriented links L, this

shows that Hβ(f) is an invariant of X-colored links f . Therefore, the biquandle homology multiset, Bhβ(L),
is in fact an invariant of oriented uncolored links L.

3.5 Conclusions and Further Questions
The biquandle bracket generalizes the Jones polynomial J(L), which Khovanov homology categorifies. Our
goal was to generalize Khovanov homology to a categorification of biquandle brackets and obtain the invariant
F in the following diagram:

Fβ(L) ΦβX(L)

Kh(L) J(L)

Take β=[q|q−1]

Take Euler Characteristic

Take β=[q|q−1]

Take Euler Characteristic

However, the top arrow in this diagram fails to hold in general with our invariant Bhβ(L):

Bhβ(L) ΦβX(L)

Kh(L) J(L)

Take β=[q|q−1]

Take Euler Characteristic

Take β=[q|q−1]

Take Euler Characteristic

This opens up a few questions.
First, which biquandle brackets are truly categorified by this construction? This question is strongly

related to the properties of the group G derived from the biquandle bracket β. Some progress towards
understanding this group is outlined in [4].

Second, how does the invariant Bhβ(L) compare in power to the biquandle bracket invariant ΦβX(L)?
Specifically, we can ask how the two separate pieces, Khβ(L) (the quotient of Khovanov homology) and
Zβ(L) (the invariant obtained from the canonical 2-cocycle associated to β) compare in power to ΦβX(L).

As far as Khβ(L) goes, it is simply weaker than the previously-known Kh(L). And the invariant Zβ(L)
is actually easier to compute than Bhβ(L). So the most important comparison to make is between Zβ(L)

and ΦβX(L). Computer testing using mathematica packages (to be discussed in chapter 4) has exhibited
examples of knots which are distinguished by ΦβX(L) but not by Zβ(L). So far no knots have been found
to be distinguished by Zβ(L) but not by ΦβX(L), and so we conjecture that Zβ(L) is weaker than ΦβX(L),
although this has not been proven.

Finally, does the invariant F exist? The construction we have outlined seems (to the authors) to be
the most natural step away from Khovanov homology toward a categorification of biquandle brackets, but
technical limitations prevent the construction from truly categorifying all biquandle brackets. Is it possible,
with more advanced techniques, to create an invariant that simultaneously categorifies every biquandle
bracket and generalizes Khovanov homology?
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Chapter 4

Mathematica Packages

In this section, we present documentation for the Mathematica packages developed by the authors to be
used for doing computations with biquandles, biquandle brackets, and biquandle 2-cocycles, including the
canonical biquandle 2-cocycle associated with a biquandle bracket. These packages have been used to find
examples of biquandles and biquandle brackets in [4], and can be used to perform more experiments with
these mathematical objects.

The full source code for all Mathematica packages discussed here can be found in appendix A, and the
packages can also be downloaded from vilas.us/biquandles.

4.1 Biquandles
This package contains functions used for computations on finite biquandles. Following is a list of visible
functions from the Biquandles.wl package, along with a description of each one.

Biquandle is the data type for a biquandle. It contains an integer, which represents the number of elements
in the biquandle, and it contains two matrices, which represent the two operations on the biquandle, as in
remark 1. Note that Mathematica does not do any sort of type-checking, so one can put in any matrices
and will obtain a “valid” biquandle object, although it may not actually represent a biquandle.

BiquandleQ is a function that checks the biquandle axioms. This is how we ensure that the Biquandle ob-
ject we are working with does actually represent a biquandle. This function, when passed a Biquandle object,
will return either True, if the object’s matrices satisfy all of the biquandle axioms, or False otherwise. To
check each of the three biquandle axioms separately, one can use the BiquandleAxiom1Q, BiquandleAxiom2Q,
and BiquandleAxiom3Q functions.

UnTri represents the B operation on biquandles. When passed a Biquandle object and two integers, it will
perform the B operation on the biquandle elements represented by the two integers and return the integer
representing the result. Similarly, OvTri represents the B operation.

UnTriInverse represents the inverse operation B−1. The notation xB−1 y really means β−1
y (x), where

βy(x) = xB y as in axiom (ii) of definition 1 (this inverse function is guaranteed to exist by that biquandle
axiom). Similarly, OvTriInverse represents B−1.

BiquandleElements returns a list of the elements in a particular Biquandle object. At the time of writing,
this will always be a list of integers of the form {1, 2, . . . , n}, where n is the size of the biquandle. However,
if in the future there are more different ways to represent a biquandle in the system, this function will be
overriden to be used to obtain an iterable object containing all elements of a given biquandle.
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BiquandleColoringQ is a function used to determine whether a given assignment of biquandle elements
to strands in a link diagram is a valid biquandle coloring. This requires some explanation of how knots and
links are represented in Mathematica using the KnotTheory package.

For the purposes of these packages, all knots and links should be represented by planar diagrams, which
are just lists of symbols that can be read by a computer. In a planar diagram of a link, a the strands of a link
are labeled by integers, increasing as the knot is traversed. The crossings in the link are then represented by
symbols that include data about which strands are involved in the crossing and in which order. See [7] for
more information about planar diagrams.

The function BiquandleColoringQ takes as input a planar diagram of a link, a Biquandle object, and
a list of elements of the biquandle. The interpretation of this is that the strand labeled with the integer i
will be colored by the biquandle element in position i of the given list. The function will return True if the
given coloring is valid (i.e. the crossing relations are satisfied at each crossing) and False otherwise.

AllBiquandleColorings is a function that takes as input a planar diagram of a link and a Biquandle
object, and returns a list of all valid colorings of the link by the biquandle. These colorings are represented
by lists of colors as in the input for BiquandleColoringQ.

BiquandleCountingInvariant takes a planar diagram of a link L and a Biquandle object representing
a biquandle X, and returns the biquandle counting invariant ΦZ

X(L). This function simply just takes the
output of AllBiquandleColorings and computes the cardinality.

4.2 Biquandle Brackets
This package contains functions used for computations with biquandle brackets over finite biquandles,
taking values in a certain class of commutative rings. Following is a list of visible functions from the
BiquandleBrackets.wl package, along with a description of each one.

BiquandleBracket is the data type for a biquandle bracket. It contains a Biquandle object, which the
biquandle bracket is defined over. It also contains data that represents the ring R where the biquandle
bracket takes values. The rings that can be represented in the framework of this Mathematica package are
all quotients of the rings of polynomials over Q or any finite field of prime order. Additionally, Z/nZ can be
used, for any integer n.

These rings are represented in the BiquandleBracket object by a list, called Ideal, of polynomials which
serve as generators for an ideal I in a ring of polynomials over Q. For example, if Ideal = { x^2 - 2 },
then the ring represented is Q[x]/(x2 − 2) ∼= Q[

√
2]. To obtain a quotient of a ring of polynomials over a

finite field Fp of prime order, one simply includes the prime integer p in the list Ideal. For example, if we
have Ideal = { 7, 2 x^4 + 3 y, z^8 - 2 }, then the ring represented is F7[x, y, z]/(2x4 + 3y, z8 − 2).
Finally, to represent Z/nZ, the Ideal list must contain only the integer n. For some reason, Mathematica
has trouble with quotients of polynomial rings over rings that are not fields, and the authors have not been
able to represent rings like (Z/4Z)[x, y]/(x2 − y3).

The BiquandleBracket data type also contains two matrices represenging A and B as in remark 2, and
the elements δ and w detailed in definition 2. There is also a constructor for the BiquandleBracket data
type that doesn’t require the user to input δ and w, since these two elements can be determined from the
matrices A and B.

BiquandleBracketQ is used to check that a given BiquandleBracket object does in fact represent a valid
biquandle bracket. It checks that the elements in the A and B matrices are invertible elements of the ring
specified by Ideal, and it also checks the three biquandle bracket axioms, which are accessible separately
as BiquandleBracketAxiom1Q, BiquandleBracketAxiom2Q, and BiquandleBracketAxiom3Q. The function
BiquandleBracketQ returns True if all of these checks pass, and False otherwise.

GetBiquandle takes a BiquandleBracket object and returns the underlying Biquandle object that the
represented biquandle bracket is defined over.
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BiquandleBracketColoringValue takes as input a BiquandleBracket object representing a biquandle
bracket β, a planar diagram representing a link, and a list representing a coloring f of the link. It returns
the value β(f) of the biquandle bracket invariant on the coloring.

BiquandleBracketValue takes as input a BiquandleBracket object representing a biquandle bracket β
defined over a biquandle X, and a planar diagram representing a link L. It returns the multiset ΦβX(L).

4.3 Biquandle 2-Cocycles
This package contains functions used for computations with biquandle 2-cocycles over finite biquandles taking
values in certain abelian groups that are written multiplicatively. Following is a list of visible functions from
the Biquandle2Cocycles.wl package, along with a description of each one.

Biquandle2Cocycle is the data type for a biquandle 2-cocycle. It contains a Biquandle object and a
matrix representing the 2-cocycle as in remark 3.

Biquandle2CocycleQ checks that the given Biquandle2Cocycle object actually represents a biquandle
2-cocycle. It does this by checking the two axioms, which are accessible as Biquandle2CocycleAxiom1Q and
Biquandle2CocycleAxiom2Q. The function Biquandle2CocycleQ returns True if the axioms hold and False
otherwise.

Biquandle2CocycleInvariantValue takes as input a planar diagram representing a link L, as well as a
Biquandle2Cocycle object representing a biquandle 2-cocycle φ. The function returns the value of the
biquandle 2-cocycle invariant associated with φ on the link L.

4.4 The Canonical Biquandle 2-Cocycle
This package contains functions used for computations with the canonical biquandle 2-cocycle associated with
a biquandle bracket. This is a list of visible functions from the BiquandleBracketCanonical2Cocycle.wl
package, along with a description of each one.

BiquandleBracketCanonical2Cocycle takes as input a BiquandleBracket object representing a biquan-
dle bracket β, and returns the canonical biquandle 2-cocycle φβ associated with β. Note that this biquandle
2-cocycle will not necessarily pass the checks in the Biquandle2CocycleQ function, since φβ takes values in
a quotient group and only returns representatives for the classes in the group. The Biquandle2CocycleQ
function only checks for raw equality, and doesn’t have information about the quotient group structure of
the target of φβ . Nevertheless, as long as the BiquandleBracket represents a valid biquandle bracket, this
function will return a valid biquandle 2-cocycle, although checking the equality of values of the invariant
associated with φβ will rely on a helper function discussed below.

BiquandleBracketKernel takes as input a BiquandleBracket object representing a biquandle bracket β,
and returns a list of generators of the group G associated with β (as discussed in section 3.2).

MultisetQuotientEqualityQ is a function that takes as input two multisets of elements in a quotient
group, as well as the list of generators for the kernel of the projection associated with the quotient group.
This function returns True if the two multisets are the same, when their elements are considered modulo the
given kernel, and False otherwise.
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Appendix A

Source Code

Following is the full source code for all Mathematica packages used and described in this paper. The files may
be downloaded directly from vilas.us/biquandles, and that site will contain the most up-to-date versions.

A.1 Biquandles.wl

(∗ Author: Vilas Winstein ∗)

BeginPackage["Biquandles‘"]
Needs["KnotTheory‘"]

Biquandle::usage="The symbol type for a biquandle.";
BiquandleAxiom1Q::usage="Returns true if the given Biquandle symbol satisfies biquandle axiom 1, false

otherwise.";
BiquandleAxiom2Q::usage="Returns true if the given Biquandle symbol satisfies biquandle axiom 2, false

otherwise.";
BiquandleAxiom3Q::usage="Returns true if the given Biquandle symbol satisfies biquandle axiom 3, false

otherwise.";
BiquandleQ::usage="Returns true if the given Biquandle symbol satisfies the biquandle axioms, false otherwise

. Use the Verbose option to see which axiom fails.";
UnTri::usage="Apply the ’Underlined Triangle’ operation of a given biquandle to two elements.";
OvTri::usage="Apply the ’Overlined Triangle’ operation of a given biquandle to two elements.";
UnTriInverse::usage="Apply the inverse of the ’Underlined Triangle’ operation of a given biquandle to two

elements.";
UnTriInverse::usage="Apply the inverse of the ’Overlined Triangle’ operation of a given biquandle to two

elements.";
BiquandleElements::usage="Get a list of the elements of a particular biquandle.";
BiquandleColoringQ::usage="Returns true if the given coloring (with the given biquandle) is valid for the

given knot Planar Diagram.";
AllBiquandleColorings::usage="Returns a list of all valid colorings of a given link with a given biquandle.";
BiquandleCountingInvariant::usage="Returns the biquandle counting invariant of the given link with the given

biquandle.";

Begin["Private‘"]

(∗ How to declare a biquandle ∗)
Biquandle[n_Integer,untri_List,ovtri_List];

(∗ Checks that the shape of operation matrices are correct ∗)
BiquandleMatrixShapeQ[Biquandle[n_,u_,o_]] := Dimensions[u]=={n,n}&&Dimensions[o]=={n,n};

(∗ Biquandle Axiom 1 ∗)
BiquandleAxiom1Q[Biquandle[n_,u_,o_]] := AllTrue[Range[n],Function[x, u[[x,x]]==o[[x,x]]]];

(∗ Biquandle Axiom 2 ∗)
BiquandleAxiom2Q[Biquandle[n_,u_,o_]] :=
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Catch[
If[Not[AllTrue[Range[n],Function[y, Sort[u[[All,y]]]==Range[n] && Sort[o[[All,y]]]==Range[n

]]]],
Throw[False]

];
If[Not[Sort[Thread[List[Flatten[Transpose[o]],Flatten[u]]]]==Tuples[Range[n],2]],

Throw[False]
];
Throw[True];

];

(∗ Helper function which tests the exchange laws for a particular triple of biquandle elements ∗)
ExchangeLawsQ[u_,o_,List[x_,y_,z_]] :=

Catch[
Module[{law1, law2, law3},

law1 = u[[u[[x,y]],u[[z,y]]]]==u[[u[[x,z]],o[[y,z]]]];
law2 = o[[u[[x,y]],u[[z,y]]]]==u[[o[[x,z]],o[[y,z]]]];
law3 = o[[o[[x,y]],o[[z,y]]]]==o[[o[[x,z]],u[[y,z]]]];
Throw[law1&&law2&&law3];

];
];

(∗ Biquandle Axiom 3 ∗)
BiquandleAxiom3Q[Biquandle[n_,u_,o_]] :=

Catch[
Do[

If[Not[ExchangeLawsQ[u,o,T]], Throw[False]],
{T, Tuples[Range[n],3]}

];
Throw[True];

];

(∗ A list of all biquandle axioms ∗)
BiquandleAxioms = {BiquandleAxiom1Q, BiquandleAxiom2Q, BiquandleAxiom3Q};

(∗ Function that checks whether a "biquandle" satisfies the biquandle axioms ∗)
BiquandleQ[X_Biquandle, OptionsPattern[]]:=

Catch[
If[Not[BiquandleMatrixShapeQ[X]],

If[OptionValue[Verbose], Print["Dimensions of operation matrices are incorrect."]];
Throw[False];
];

For[i=1,i<=3,i++,
If[Not[BiquandleAxioms[[i]][X]],

If[OptionValue[Verbose], Print["Biquandle fails Axiom " <> ToString[i]]];
Throw[False];

];
];
Throw[True];

];

(∗ By default, BiquandleQ doesn’t print anything ∗)
Options[BiquandleQ] = {Verbose −> False};

(∗ Given a biquandle, perform the operations ∗)
UnTri[Biquandle[n_,u_,o_],x_Integer,y_Integer]:=u[[x,y]];
OvTri[Biquandle[n_,u_,o_],x_Integer,y_Integer]:=o[[x,y]];

(∗ Perform the inverse operations ∗)
UnTriInverse[Biquandle[n_,u_,o_],x_Integer,y_Integer]:=Position[u[[All,y]],x][[1,1]];
OvTriInverse[Biquandle[n_,u_,o_],x_Integer,y_Integer]:=Position[o[[All,y]],x][[1,1]];

(∗ Get the elements of a biquandle ∗)
BiquandleElements[Biquandle[n_,u_,o_]]:=Range[n];

(∗ See if a particular coloring is valid at a given crossing ∗)
ColoringSatisfiedAtCrossing[X[i_,j_,k_,l_],B_Biquandle,coloring_List]:=
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If[j−l==1||l−j>1,
UnTri[B,coloring[[i]],coloring[[j]]]==coloring[[k]]&&OvTri[B,coloring[[j]],coloring[[i]]]==

coloring[[l]],
OvTri[B,coloring[[j]],coloring[[k]]]==coloring[[l]]&&UnTri[B,coloring[[k]],coloring[[j]]]==

coloring[[i]]];

ColoringSatisfiedAtCrossing[Xp[i_,j_,k_,l_],B_Biquandle,coloring_List]:=
UnTri[B,coloring[[i]],coloring[[j]]]==coloring[[k]]&&OvTri[B,coloring[[j]],coloring[[i]]]==

coloring[[l]];

ColoringSatisfiedAtCrossing[Xm[i_,j_,k_,l_],B_Biquandle,coloring_List]:=
OvTri[B,coloring[[j]],coloring[[k]]]==coloring[[l]]&&UnTri[B,coloring[[k]],coloring[[j]]]==

coloring[[i]];

BiquandleColoringQ[link_PD,B_Biquandle,coloring_List]:=
AllTrue[link,ColoringSatisfiedAtCrossing[#,B,coloring]&];

NumberOfEdges[link_PD]:=
Max[Flatten[Map[List @@ # &, List @@ link]]];

AllBiquandleColorings[link_PD,B_Biquandle]:=
Select[Tuples[BiquandleElements[B],NumberOfEdges[link]], BiquandleColoringQ[link,B,#]&];

BiquandleCountingInvariant[link_PD,B_Biquandle]:=Length[AllBiquandleColorings[link,B]];

End[]
EndPackage[]

A.2 BiquandleBrackets.wl

(∗ Author: Vilas Winstein ∗)

BeginPackage["BiquandleBrackets‘"]
Needs["KnotTheory‘"]
Needs["Biquandles‘"]

BiquandleBracket::usage="The symbol type for a biquandle bracket.";
BiquandleBracketAxiom1Q::usage="Returns true if the given BiquandleBracket symbol satisfies biquandle bracket

axiom 1, false otherwise.";
BiquandleBracketAxiom2Q::usage="Returns true if the given BiquandleBracket symbol satisfies biquandle bracket

axiom 2, false otherwise.";
BiquandleBracketAxiom3Q::usage="Returns true if the given BiquandleBracket symbol satisfies biquandle bracket

axiom 3, false otherwise.";
BiquandleBracketQ::usage="Returns true if the given BiquandleBracket symbol satisfies the biquandle bracket

axioms, and in addition takes values in a factor of Z[x,y,z,...], false otherwise. Use the Verbose
option to see which axiom fails.";

BiquandleBracketColoringValue::usage="Returns the value of the given biquandle bracket on the given link with
the given biquandle coloring.";

BiquandleBracketValue::usage="Returns the value (a multiset) of the given biquandle bracket on the given link
.";

GetBiquandle::usage="Get the biquandle used by a particular biquandle bracket.";

Begin["Private‘"]

(∗ How to declare a biquandle bracket ∗)
BiquandleBracket[X_Biquandle, Ideal_List, A_List, B_List, \[Delta], w];

(∗ Another biquandle bracket constructor that doesn’t require you to specify \[Delta] or w ∗)
BiquandleBracket[X_Biquandle, Ideal_List, A_List, B_List] :=

BiquandleBracket[X, Ideal, A, B, \[Delta], PolynomialMod[\[Delta] A[[1,1]]+B[[1,1]], Ideal]] /.\[
Delta] −> PolynomialMod[−A[[1,1]]/B[[1,1]]−B[[1,1]]/A[[1,1]], Ideal];

(∗ Function for checking whether two things are equal mod an ideal ∗)
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PolynomialModEquality[p_, q_, Ideal_] := PolynomialMod[p − q, Ideal] === 0;

(∗ Biquandle bracket Axiom 1 ∗)
BiquandleBracketAxiom1Q[BiquandleBracket[X_Biquandle, Ideal_List, A_List, B_List, \[Delta]_, w_]] :=

Catch[
Do[

If[Not[PolynomialModEquality[\[Delta] A[[x,x]] + B[[x,x]], w, Ideal]], Throw[False]];
If[Not[PolynomialModEquality[\[Delta]/A[[x,x]] + 1/B[[x,x]], 1/w, Ideal]], Throw[

False]],
{x, BiquandleElements[X]}

];
Throw[True];

];

(∗ Helper method for Axiom 2 ∗)
BiquandleBracketAxiom2Condition[Ideal_List, A_List, B_List, \[Delta]_, List[x_, y_]] := PolynomialModEquality

[\[Delta], −A[[x,y]]/B[[x,y]]−B[[x,y]]/A[[x,y]], Ideal];

(∗ Biquandle bracket Axiom 2 ∗)
BiquandleBracketAxiom2Q[BiquandleBracket[X_Biquandle, Ideal_List, A_List, B_List, \[Delta]_, w_]] :=

Catch[
Do[

If[Not[BiquandleBracketAxiom2Condition[Ideal, A, B, \[Delta], T]], Throw[False]],
{T, Tuples[BiquandleElements[X], 2]}

];
Throw[True];

];

(∗ Helper function for the first group of conditions in axiom 3−−requires additional input of order type ∗)
BiquandleBracketAxiom3ConditionGroup1[X_Biquandle, Ideal_List, List[L1_List, L2_List, L3_List, R1_List,

R2_List, R3_List], List[x_, y_, z_]] :=
PolynomialModEquality[L1[[x,y]] L2[[y,z]] L3[[UnTri[X,x,y], OvTri[X,z,y]]], R1[[x,z]] R2[[OvTri[X,y,x

], OvTri[X,z,x]]] R3[[UnTri[X,x,z], UnTri[X,y,z]]], Ideal];

(∗ Helper function for the fourth condition in axiom 3 ∗)
BiquandleBracketAxiom3Condition4[X_Biquandle, Ideal_List, A_List, B_List, \[Delta]_, List[x_, y_, z_]] :=

PolynomialModEquality[A[[x,y]] A[[y,z]] B[[UnTri[X,x,y], OvTri[X,z,y]]], A[[x,z]] B[[OvTri[X,y,x],
OvTri[X,z,x]]] A[[UnTri[X,x,z], UnTri[X,y,z]]] + A[[x,z]] A[[OvTri[X,y,x], OvTri[X,z,x]]] B[[
UnTri[X,x,z], UnTri[X,y,z]]] + \[Delta] A[[x,z]] B[[OvTri[X,y,x], OvTri[X,z,x]]] B[[UnTri[X,x,z
], UnTri[X,y,z]]] + B[[x,z]] B[[OvTri[X,y,x], OvTri[X,z,x]]] B[[UnTri[X,x,z], UnTri[X,y,z]]],
Ideal];

(∗ Helper function for the fifth condition in axiom 3 ∗)
BiquandleBracketAxiom3Condition5[X_Biquandle, Ideal_List, A_List, B_List, \[Delta]_, List[x_, y_, z_]] :=

PolynomialModEquality[B[[x,y]] A[[y,z]] A[[UnTri[X,x,y], OvTri[X,z,y]]] + A[[x,y]] B[[y,z]] A[[UnTri[
X,x,y], OvTri[X,z,y]]] + \[Delta] B[[x,y]] B[[y,z]] A[[UnTri[X,x,y], OvTri[X,z,y]]] + B[[x,y]] B
[[y,z]] B[[UnTri[X,x,y], OvTri[X,z,y]]], B[[x,z]] A[[OvTri[X,y,x], OvTri[X,z,x]]] A[[UnTri[X,x,z
], UnTri[X,y,z]]], Ideal];

(∗ Biquandle bracket Axiom 3 ∗)
BiquandleBracketAxiom3Q[BiquandleBracket[X_Biquandle, Ideal_List, A_List, B_List, \[Delta]_, w_]] :=

Catch[
Module[{condGroup1Types},

condGroup1Types = { {A, A, A, A, A, A}, {A, B, B, B, B, A}, {B, A, B, B, A, B} };
Do[

For[i=1,i<=3,i++,
If[Not[BiquandleBracketAxiom3ConditionGroup1[X, Ideal, A, B,

condGroup1Types[i], T]], Throw[False]]
];
If[Not[BiquandleBracketAxiom3Condition4[X, Ideal, A, B, \[Delta], T]], Throw[

False]];
If[Not[BiquandleBracketAxiom3Condition5[X, Ideal, A, B, \[Delta], T]], Throw[

False]],
{T, Tuples[BiquandleElements[X],3]}

];
Throw[True];

];
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];

(∗ A list of all biquandle bracket axioms ∗)
BiquandleBracketAxioms = {BiquandleBracketAxiom1Q, BiquandleBracketAxiom2Q, BiquandleBracketAxiom3Q};

(∗ Check whether the "biquandle bracket" satisfies the biquandle bracket axioms and takes values in a factor
of Z[x,y,z,...] ∗)

BiquandleBracketQ[AB_BiquandleBracket, OptionsPattern[]] :=
Catch[

For[i=1,i<=3,i++,
If[Not[BiquandleBracketAxioms[[i]][AB]],

If[OptionValue[Verbose], Print["Biquandle bracket fails Axiom " <> ToString[i
]]];

Throw[False];
];

];
Throw[True];

];

(∗ Default verbosity for BiquandleBracketQ ∗)
Options[BiquandleBracketQ] = {Verbose −> False};

(∗ Self explanatory ∗)
GetBiquandle[BiquandleBracket[X_Biquandle,_,_,_,_,_]] := X;

(∗ Section involving computing values of biquandle brackets below ∗)
SetAttributes[BBPP, Orderless];

(∗ Represents the value of a biquandle bracket at a particular smoothing ∗)
Smoothing[link_PD,state_List, crossingColors_List, A_List,B_List,\[Delta]_,Ideal_List] :=

Module[{t1,t2,t3,t4,t5},
t1 = Thread[{List @@ link, state, crossingColors}];
t2 = t1 /. {

{X[i_,j_,k_,l_],0,{x_,y_}}:>If[j−l==1||l−j>1,A[[x,y]],1/B[[x,y]]] BBPP[i,j]
BBPP[k,l],

{X[i_,j_,k_,l_],1,{x_,y_}}:>If[j−l==1||l−j>1,B[[x,y]],1/A[[x,y]]] BBPP[i,l]
BBPP[j,k],

{Xp[i_,j_,k_,l_],0,{x_,y_}}:> A[[x,y]]BBPP[i,j]BBPP[k,l],
{Xp[i_,j_,k_,l_],1,{x_,y_}}:> B[[x,y]]BBPP[i,l]BBPP[j,k],
{Xm[i_,j_,k_,l_],0,{x_,y_}}:>(1/B[[x,y]])BBPP[i,j]BBPP[k,l],
{Xm[i_,j_,k_,l_],1,{x_,y_}}:>(1/A[[x,y]])BBPP[i,l]BBPP[j,k]

};
t3 = Times @@ t2;
t4 = t3 //. {BBPP[i_,j_]BBPP[j_,k_]:>BBPP[i,k]};
t5 = t4/.BBPP[_,_]^2:>\[Delta];
Return[PolynomialMod[t5,Ideal]];

];

(∗ Returns a list of pairs of colors for each crossing of a link ∗)
CrossingColors[link_PD,coloring_List] :=

List@@(link/.{
X[i_,j_,k_,l_]:>If[j−l==1||l−j>1,{coloring[[i]],coloring[[j]]},{coloring[[k

]],coloring[[j]]}],
Xp[i_,j_,k_,l_]:>{coloring[[i]],coloring[[j]]},
Xm[i_,j_,k_,l_]:>{coloring[[k]],coloring[[j]]}
});

(∗ Return the number of positive and negative crossings respectively ∗)
BBnp[link_PD] := Count[link,X[i_,j_,k_,l_]/;j−l==1||l−j>1]+Count[link,x_Xp];
BBnm[link_PD] := Count[link,X[i_,j_,k_,l_]/;l−j==1||j−l>1]+Count[link,x_Xm];

(∗ Get the value of a biquandle bracket on a particular colored link ∗)
BiquandleBracketColoringValue[BiquandleBracket[_,Ideal_List,A_List,B_List,\[Delta]_,w_], link_PD,

coloring_List] :=
PolynomialMod[Total[Map[Smoothing[link,#,CrossingColors[link,coloring],A,B,\[Delta],Ideal]&,Tuples

[{0,1},Length[link]]]]∗w^(BBnm[link]−BBnp[link]),Ideal];
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(∗ Get the (multiset) value of a biquandle bracket on a particular link ∗)
BiquandleBracketValue[AB_BiquandleBracket, link_PD] :=

Map[BiquandleBracketColoringValue[AB, link, #]&, AllBiquandleColorings[link, GetBiquandle[AB]]];

End[]
EndPackage[]

A.3 Biquandle2Cocycles.wl

(∗ Author: Vilas Winstein ∗)

BeginPackage["Biquandle2Cocycles‘"]
Needs["KnotTheory‘"]
Needs["Biquandles‘"]

Biquandle2Cocycle::usage="The symbol type for a biquandle 2−cocycle.";
Biquandle2CocycleAxiom1::usage="Returns true if the given Biquandle2Cocycle symbol satisfies biquandle 2−

cocycle axiom 1, false otherwise.";
Biquandle2CocycleAxiom2::usage="Returns true if the given Biquandle2Cocycle symbol satisfies biquandle 2−

cocycle axiom 2, false otherwise.";
Biquandle2CocycleQ::usage="Returns true if the given Biquandle2Cocycle symbol satisfies all biquandle 2−

cocycle axioms, false otherwise.";
Biquandle2CocycleInvariantValue::usage="Returns the value (a multiset) of the given biquandle 2−cocycle

invariant on the given link.";

Begin["Private‘"]

(∗ How to declare a biquandle 2−cocycle ∗)
Biquandle2Cocycle[B_Biquandle, \[Phi]_List];

Biquandle2CocycleAxiom1[Biquandle2Cocycle[B_Biquandle, \[Phi]_List]] := AllTrue[Table[\[Phi][[i,i]], {i, 1,
Length[BiquandleElements[B]]}], #==1&];

Biquandle2CocycleAxiom2Helper[B_Biquandle, \[Phi]_List, List[x_,y_,z_]] := \[Phi][[x,y]] \[Phi][[y,z]] \[Phi
][[OvTri[B,x,y], UnTri[B,z,y]]] == \[Phi][[x,z]] \[Phi][[OvTri[B,y,x], OvTri[B,z,x]]] \[Phi][[UnTri[B,x,
z], UnTri[B,y,z]]];

Biquandle2CocycleAxiom2[Biquandle2Cocycle[B_Biquandle, \[Phi]_List]] := AllTrue[Tuples[BiquandleElements[B
],3], Biquandle2CocycleAxiom2Helper[B,\[Phi],#]&];

Biquandle2CocycleQ[\[Phi]_Biquandle2Cocycle] := Biquandle2CocycleAxiom1[\[Phi]] && Biquandle2CocycleAxiom2[\[
Phi]];

(∗ The value of the invariant on a particular colored crossing ∗)
Biquandle2CocycleInvariantCrossingValue[X[i_,j_,k_,l_], coloring_List, \[Phi]_List] := If[j−l==1||l−j>1, \[

Phi][[coloring[[i]],coloring[[j]]]], 1/\[Phi][[coloring[[k]],coloring[[j]]]]];
Biquandle2CocycleInvariantCrossingValue[Xp[i_,j_,k_,l_], coloring_List, \[Phi]_List] := \[Phi][[coloring[[i

]],coloring[[j]]]];
Biquandle2CocycleInvariantCrossingValue[Xm[i_,j_,k_,l_], coloring_List, \[Phi]_List] := 1/\[Phi][[coloring[[k

]],coloring[[j]]]];

(∗ The value of the invariant on a particular colored link ∗)
Biquandle2CocycleInvariantColoringValue[L_PD, coloring_List, \[Phi]_List] := Times @@ (

Biquandle2CocycleInvariantCrossingValue[#,coloring,\[Phi]]& /@ L);

Biquandle2CocycleInvariantValue[L_PD, Biquandle2Cocycle[B_Biquandle, \[Phi]_List]] :=
Biquandle2CocycleInvariantColoringValue[L, #, \[Phi]]& /@ AllBiquandleColorings[L, B];

End[]
EndPackage[]
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A.4 BiquandleBracketCanonical2Cocycle.wl

(∗ Author: Vilas Winstein ∗)

BeginPackage["BiquandleBracketCanonical2Cocycle‘"]
Needs["KnotTheory‘"]
Needs["Biquandles‘"]
Needs["BiquandleBrackets‘"]
Needs["Biquandle2Cocycles‘"]

BiquandleBracketCanonical2Cocycle::usage="Return the canonical 2−cocycle for a given biquandle bracket.";
BiquandleBracketKernel::usage="Gives a set of generators for G = < q q[x,y]^(−1) : x,y \[Element] X >.";
MultisetQuotientEqualityQ::usage="Check for equality of two multisets with entries in a multiplicative

quotient group.";

Begin["Private‘"]

BiquandleBracketCanonical2Cocycle[BiquandleBracket[X_Biquandle, Ideal_List, A_List, B_List, \[Delta]_, w_]]
:= Biquandle2Cocycle[X, A[[1,1]]^(−1) A];

q[A_List, B_List, x_Integer, y_Integer] := −B[[x,y]] / A[[x,y]];

BiquandleBracketKernel[BiquandleBracket[X_Biquandle, Ideal_List, A_List, B_List, \[Delta]_, w_]] := Table[
PolynomialMod[q[A,B,1,1]/q[A,B,x,y], Ideal], {x, BiquandleElements[X]}, {y, BiquandleElements[X]}] //
Flatten // DeleteDuplicates;

MultiplicativeMod[kernel_List] := #−>1& /@ kernel;

MultisetQuotientEqualityQ[mset1_List, mset2_List, kernel_List] := Length[mset1] == Length[mset2] && AllTrue[
mset1, Count[Factor[#^(−1) mset1] //. MultiplicativeMod[kernel], 1] == Count[Factor[#^(−1) mset2] //.
MultiplicativeMod[kernel], 1] &];

End[]
EndPackage[]
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